Generation of closely located light spots using specular Airy laser beams
Khonina S.N., Porfirev A.P., Fomchenkov S.A., Larkin A.S., Savelyev-Trofimov A.B.

 

Image Processing Systems Institute оf RAS, – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Samara National Research University, Samara, Russia,

Lomonosov Moscow State University, Moscow, Russia

Full text of article: Russian language.

 PDF

DOI: 10.18287/2412-6179-2017-41-5-661-669

Pages: 661-669.

Abstract:
We conduct a comparative numerical study of the formation of closely located light spots in the focal plane of diffraction gratings and binary optical elements matched with Hermite-Gaussian modes and specular Airy beams. It is shown that while gratings allow a set of  uniform focal spots to be generated with high accuracy, the resulting pattern quickly deteriorates when displaced from the focal plane. Due to their modal properties, Hermite-Gaussian beams are low-sensitive to defocusing, but produce focal spots different in size and intensity. Specular Airy beams offer a trade-off solution - they produce a more uniform intensity pattern of light spots than the Hermite-Gaussian modes, at the same time showing a lower sensitivity to defocusing. Experiments with a tunable laser have confirmed the above-mentioned advantages of the specular Airy beams in comparison with the Hermite-Gaussian modes, also showing good spectral stability of the manufactured diffraction optics.

Keywords:
focusing into a set of light spots, diffractive optical element, Hermite-Gaussian modes, specular Airy beams, depth of focus, chromatic dispersion.

Citation:
Khonina SN, Porfirev AP, Fomchenkov SA, Larkin AS, Savelyev-Trofimov AB. Generation of closely located light spots using specular Airy laser beams. Computer Optics 2017; 41(5): 661-669. DOI: 10.18287/2412-6179-2017-41-5-661-669.

References:

  1. Malka V, Faure J, Gauduel YA, Lefebvre E, Rousse A, Phuoc KT. Principles and applications of compact laser-plasma accelerators. Nat Phys 2008; 4: 447-453. DOI: 10.1038/nphys966.
  2. Cheng J, Liu C, Shang S, Liu D, Perrie W, Dearden G, Watkins K. A review of ultrafast laser materials micro-machining. Opt Laser Techn 2013; 46: 88-102. DOI: 10.1016/j.optlastec.2012.06.037.
  3. Uryupina DS, Ivanov KA, Brantov AV, Savel'ev AB, Bychenkov VYu, Povarnitsyn ME, Volkov RV, Tikhonchuk VT. Femtosecond laser-plasma interaction with prepulse-generated liquid metal microjets. Physics of Plasmas 2012; 19(1): 013104. DOI: 10.1063/1.3675871.
  4. Lar'kin A, Uryupina D, Ivanov K, Savel'ev A, Bonnet T, Gobet F, Hannachi F, Tarisien M, Versteegen M, Spohr K, Breil J, Chimier B, Dorchies F, Fourment C, Leguay P-M, Tikhonchuk VT. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses. Physics of Plasmas 2014; 21(9): 093103. DOI: 10.1063/1.4894099.
  5. Alferov SV, Karpeev SV, Khonina SN, Tukmakov KN, Moiseev OYu, Shulyapov SA, Ivanov KA, Savel’ev-Trofimov AB. On the possibility of controlling laser ablation by tightly focused femtosecond radiation. Quantum Electronics 2014; 44(11): 1061-1065. DOI: 10.1070/QE2014v044n11ABEH015471.
  6. Hayasaki Y, Sugimoto T, Takita A, Nishida N. Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl Phys Lett 2005; 87(3): 031101. DOI: 10.1063/1.1992668.
  7. Kuang Z, Perrie W, Leach J, Sharp M, Edwardson SP, Padgett M, Dearden G, Watkins KG. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Applied Surface Science 2008; 255(5-1): 2284-2289. DOI: 10.1016/j.apsusc.2008.07.091.
  8. Chen Y, Gu J, Wang F, Cai Y. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Phys Rev A 2015; 91: 013823. DOI: 10.1103/PhysRevA.91.013823.
  9. Soifer VA, ed. Diffractive Nanophotonics. Boca Raton: CRC Press, Taylor & Francis Group, CISP; 2014. ISBN: 978-1-466590694.
  10. Kuroiwa Y, Takeshima N, Narita Y, Tanaka S, Hirao K. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. Opt Express 2004; 12(9): 1908-1915.
  11. Torres-Peiró S, González-Ausejo J, Mendoza-Yero O, Mínguez-Vega G, Andrés P, Lancis J. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses. Opt Express 2013; 21(26): 31830-31836. DOI: 10.1364/OE.21.031830.
  12. Khonina SN, Degtyarev SA, Porfirev AP, Moiseev OYu, Poletaev SD, Larkin AS, Savelyev-Trofimov AB. Study of focusing into closely spaced spots via illuminating a diffractive optical element by a short-pulse laser beam [In Russian]. Computer Optics 2015; 39(2): 187-196. DOI: 10.18287/0134-2452-2015-39-2-187-196.
  13. Larkin AS, Pushkarev DV, Degtyarev SA, Khonina SN, Savel’ev AB. Generation of Hermite–Gaussian modes of high-power femtosecond laser radiation using binary-phase diffractive optical elements. Quantum Electronics 2016; 46(8): 733-737. DOI: 10.1070/QEL16114.
  14. Kirk JP, Jones AL. Phase-only complex-valued spatial filters. J Opt Soc Am 1971; 61(8): 1023-1028. DOI: 10.1364/JOSA.61.001023.
  15. Khonina SN, Balalayev S.A., Skidanov RV, Kotlyar VV, Päivänranta B, Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams. J Opt A: Pure Appl Opt 2009; 11(6): 065702. DOI: 10.1088/1464-4258/11/6/065702.
  16. Khonina SN, Kotlyar VV, Soifer VA. Self-reproduction of multimode Hermite-Gaussian beams. Tech Phys Lett 1999; 25(6): 489-491. DOI: 10.1134/1.1262525.
  17. Khonina SN. Specular and vortical Airy beams. Opt Commun 2011; 284: 4263-4271. DOI: 10.1016/j.opt­com.2011.05.068.
  18. Banders MA, Gutiérrez-Vega JC. Airy-Gauss beams and their transformation by paraxial optical systems. Opt Express 2007; 15(25): 16719-16728. DOI: 10.1364/OE.15.016719.
  19. Siviloglou GA, Christodoulides DN. Accelerating finite energy Airy beams. Opt Lett 2007; 32(8): 979-981. DOI: 10.1364/OL.32.000979.
  20. Dufresne ER, Spalding GC, Dearing MT, Sheets SA, Greer DG. Computer-generated holographic optical tweezer arrays. Rev Sci Instrum 2001; 72(3): 1810-1816. DOI: 10.1063/1.1344176.
  21. Soifer VA, Kotlyar VV, Khonina SN. Optical microparticle manipulation: Advances and new possibilities created by diffractive optics. Physics of Particles and Nuclei 2004; 35(6): 733-766.
  22. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  23. Porfirev AP, Khonina SN. Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions. Proc SPIE 2016; 9807: 98070E. DOI: 10.1117/12.2231378.
  24. Golub MA. Laser beam splitting by diffractive optics. Optics & Photonics News 2004; 15(2): 36-41. DOI: 10.1364/OPN.15.2.000036.
  25. Zhu L, Sun M, Zhu M, Chen J, Gao X, Ma W, Zhang D. Three-dimensional shape-controllable focal spot  array created by focusing vortex beams modulated by multi-value pure-phase grating. Opt Express 2014; 22(18): 21354-21367. DOI: 10.1364/OE.22.021354.
  26. Khonina SN, Kotlyar VV, Soifer VA, Lautanen J, Honkanen M, Turunen J. Generation of Gauss-Hermite modes using binary DOEs. Proc SPIE 1999; 4016: 234-239. DOI: 10.1117/12.373630.
  27. Backus S, Durfee CG, Murnane MM, Kapteyn HC. High power ultrafast lasers. Rev Sci Instrum 1998; 69(3): 1207-1223. DOI: 10.1063/1.1148795.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru ; Phones: +7 (846 2) 332-56-22, Fax: +7 (846 2) 332-56-20