Experimental investigation of birefringence of a parabolic gradient-index lens on the basis of astigmatic transformation of a Bessel beam
Paranin V.D., Karpeev S.V., Babaev O.G.


Image Processing Systems Institute of the RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,

Samara National Research University, Samara, Russia

Full text of article: Russian language.


A method for the investigation of birefringence of mechanically free parabolic gradient-index lenses based on the astigmatic transformation of a zero-order Bessel beam has been experimentally verified. Special features of the alignment of the optical setup are described and practical recommendations for selecting the setup components are given. By the example of a quarter-wave lens, we show experimentally that the optical path difference can be reliably measured within a 0.05λ0 accuracy. A significant difference between the birefringence properties of the gradient-index lenses in their central and edge regions is confirmed.

birefringence, quarter-wave parabolic gradient-index lens, Bessel beam, optical path difference.

Paranin VD, Karpeev SV, Babaev OG. Experimental investigation of birefringence of a parabolic gradient-index lens on the basis of astigmatic transformation of a Bessel beam. Computer Optics 2017; 41(6): 837-841. DOI: 10.18287/2412-6179-2017-41-6-837-841.


  1. Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. JOSA A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
  2. Rouke JL, Moore DT. Birefringence measurements in gradient-index rod lenses. Appl Opt 1999; 38(31): 6574-6580. DOI: 10.1364/AO.38.006574.
  3. Camacho J, Tentori D. Polarization optics of GRIN lenses. J Opt A: Pure Appl Opt 2001; 3: 89-95.
  4. Su W, Gilbert JA. Birefringent properties of diametrically loaded gradient-index lenses. Appl Opt 1996; 35(24): 4772-4781. DOI: 10.1364/AO.35.004772.
  5. Rouke JL., Moore DT. Birefringence in gradient-index rod lenses: a direct measurement method and interferometric polarization effects. Appl Opt 2001; 40(28): 4971-4980. DOI: 10.1364/AO.40.004971.
  6. Zusin DH, Maksimenka R, Filippov VV, Chulkov RV, Perdrix M, Gobert O, Grabtchikov AS. Bessel beam transformation by anisotropic crystals. J Opt Soc Am A 2010; 27(8): 1828-1833. DOI: 10.1364/JOSAA.27.001828.
  7. Khonina SN, Paranin VD, Karpeev SV, Morozov AA. Study of polarization transformations and interaction of ordinary and extraordinary beams in nonparaxial regime [In Russian]. Computer Optics 2014; 38(4): 598-605.
  8. Khonina SN, Karpeev SV, Morozov AA, Paranin VD. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. J Mod Opt 2016; 63(13): 1239-1247. DOI: 10.1080/09500340.2015.1137368.
  9. Paranin VD. Measuring the thickness of z-cut uniaxial crystals based on Bessel laser beams [In Russian]. Computer Optics 2016; 40(4): 594-599. DOI: 10.18287/2412-6179-2016-40-4-594-599.
  10. Khonina SN, Paranin VD, Ustinov AV, Krasnov AP. Astigmatic transformation of Bessel beams in a uniaxial crystal. Optica Applicata 2016; 46(1): 5-18. DOI: 10.5277/oa160101.
  11. Paranin VD, Khonina SN. Diffractive polarization illuminator for a two-axis fiber-optic angle sensor. Proc SPIE 2017; 10342: 1034216. DOI: 10.1117/12.2270553.
  12. Bin Z, Zhu L. Diffraction property of an axicon in oblique illumination. Appl Opt 1998; 37(13): 2563-2568. DOI: 10.1364/AO.37.002563.
  13. Khonina SN, Kotlyar VV, Soifer VA. Astigmatic Bessel laser beams. J Mod Opt 2004; 51(5): 677-686. DOI: 10.1080/09500340408235545.
  14. Bendersky A, Perez-Quintián F, Rebollo MA. Modification of the structure of Bessel beams under oblique incidence. J Mod Opt 2008; 55(15): 2449-2456. DOI: 10.1080/09500340802130662.
  15. Anguiano-Morales M. Transformation of Bessel beams by means of a cylindrical lens. Appl Opt 2009; 48(25): 4826-4831. DOI: 10.1364/AO.48.004826.
  16. Khonina SN, Karpeev SV, Ustinov AV. Functional enhancement of mode astigmatic converters on the basis of application of diffractive optical elements [In Russian]. Izvestia of Samara Scientific Center of the Russian Academy of Sciences 2009; 11(5): 13-23.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20