Calculation of the higher-order axial spherical aberrations of a high-aperture focusing holographic optical element with the corrected third-order spherical aberration. Part 1
Batomunkuev Yu. Ts., Dianova A.A.

 

Optics and Optical Technologies Institute, Siberian State University of Geosystems and Technology, Novosibirsk, Russia

 PDF

Abstract:
Results of calculating the radius of higher-order spherical aberrations (fifth, seventh and ninth orders) of a high-aperture focusing holographic optical element (HOE) with corrected third-order spherical aberration in the operating spectral range are discussed. As examples, high-aperture axial HOEs with relative apertures close to 1:1 in specified spectral ranges are considered. Coordinates of the point sources of a divergent reference wave and a convergent object wave of the HOE are given. It is shown that when imaging a point source emitting in the 0.250-0.281-μm and 0.500-0.563-μm spectral ranges, the use of an HOE in the first and second diffraction orders makes it is possible to correct the third-order spherical aberration on two wavelengths and the fifth- and seventh-order spherical aberrations on one wavelength. Note that these visible-spectrum wavelengths are different from the HOE's recording wavelength of 0.532 μm.

Keywords:
holographic optical element (HOE), chromatic aberration, higher-order spherical aberration, sphero-chromatic aberration.

Citation:
Batomunkuev YuTs, Dianova AA. Calculation of the higher-order axial spherical aberrations of a high-aperture focusing holographic optical element with the corrected third-order spherical aberration. Part 1. Computer Optics 2018; 42(1): 44-53. DOI: 10.18287/2412-6179-2018-42-1-44-53.

References:

  1. Champagne EB. Nonparaxial imaging, magnification and aberration properties in holography. JOSA 1967; 57(1): 51-52. DOI: 10.1364/JOSA.57.000051.
  2. Gan МА. Theory and methods of calculation of hologram and kinoform optical elements [In Russian]. Lеningrad: “GOI” Publisher; 1984.
  3. Bobrov ST, Greisukh GI, Turkevich YG. The diffraction optics elements and systems [In Russian]. Lеningrad: "Mashinostroenie" Publisher; 1986.
  4. Zherdev A, Odinokov S, Lushnikov D, Kaitukov Ch. High-aperture diffractive lens for holographic printer [In Russian]; Photonics 2016; 3: 88-97.
  5. Latta JN. Fifth-order hologram aberrations. Appl Opt 1971; 10(3): 666-667.  DOI: 10.136/АО.10.000666.
  6. Mehta PS, Rao KSS, Hradaynath R. Higher order aberrations in hologaphic lenses. Appl Opt 1982; 21(24): 4553-4558. DOI: 10.1364/АО.21.004553.
  7. Batomunkuev YuTs. Aberrations of the ninth order of a off-axis volume hologram optical element [In Russian]; Polzunovsky Vestnik 2012; 3/2: 142-146.
  8. Bujnov GN, Mustafin KS. About one possibility of compensation of spherical aberration for holographic lens [In Russian]. Optics and Spectroscopy 1976; 41(2): 341-342.
  9. Greisukh GI, Stepanov SA. Holographic formation of the band structure of diffractive lenses with desired optical properties. In book: Denisuk YuN, ed. Holographic optical elements and systems [In Russian]. Saint-Petersburg: “Nauka” Publisher, 1994; 98-103.
  10. Snow KA, Givens MP. Production of partially achromatic zone plates by holographic techniques. JOSA 1968; 58(7): 871-874. DOI: 10.1364/JOSA.58.000871.
  11. Bennet SJ. Achromatic combinations of hologram optical elements. Appl Opt 1976; 15(2): 542-545. DOI: 10.1364/АО.15.000542.
  12. Sweatt WC. Achromatic triplet using hologram optical elements. Appl Opt 1977; 16(5): 1390-1391. DOI: 10.1364/AO.16.001390.
  13. Mustafin KS. Calculation of achromatic holographic lens systems based on thoughts lays principle [In Russian]. Optics and Spectroscopy 1978; 44(1): 164-167.
  14. Weingärtner I, Rosenbruch K-J. Chromatic correction of two- and three-element holographic imaging systems. Optica Acta 1982; 29(4): 519-529. DOI: 10.1080/713820862.
  15. Karpeev SV, Ustinov AV, Khonina SN. Design and analysis of a three-wave diffraction focusing doublet [In Russian]. Computer Optics 2016; 40(2): 173-178. DOI: 10.18287/2412-6179-2016-40-2- 173-178.
  16. Mustafin KS. Holographic optics and perspectives of its application [In Russian]. In book: Materials of the fifth holography school. Leningrad: “LIYAF” Publisher; 1973.
  17. Park Y, Koch L, Song K, Park S, King G, Choi S. Miniaturization of a Fresnel spectrometer. J Opt A: Pure Appl Opt 2008: 10(9): 095301. DOI: 10.1088/1464-4258/10/9/095301.
  18. Yuzhyk IB, Malinin VV, Popov GN. Devices for detection and suppression of the optical and electro-optical means [In Russian]. Materials of IV International scientific congress and exhibition “GEO-Siberia 2008”; 2008; 4(1): 148-152.
  19. Bobrinev VI, Grad YaA, Kovalev MS, Malinina PI, Nikolaev VV, Odinokov SB, Solomashenko AB, Stsepuro NG. The use of holographic optical elements in optical systems sights. Indian Journal of Science and Technology 2016; 9(47): 1-6. DOI: 10.17485/ijst/2016/v9i47/104552.
  20. Koreshev SN, Shevtsov MK. Optical systems of holographic collimator sights. Journal of Optical Technology 2015; 82(9): 592-597. DOI: 10.1364/JOT.82.000592.
  21. Tugarinov SN, Belokopytov AA, Lukin AV, Naumenko NN, Sattarov FA, Serov VV, Shigapova NM, Yartsev VP. A new class of high-resolution spectrometers-polyhroma­tors based on transmitting volume-phase holographic diffraction gratings [In Russian]. Contеnant 2016; 15(3): 43-49.
  22. Burunkova JA, Denisyuk IY, Zhuk DI, Sheclanova EB. Holographic nanocomposite and a related diffraction element. Optics and Spectroscopy 2017; 122(2): 341-343. DOI: 10.1134/S0030400X17020084.
  23. Batomunkuev YuTs. Calculation of the spectral range of a focusing HOE with the corrected third-order spherical aberration [In Russian]. Computer Optics 2017; 41(2): 192-201. DOI: 10.18287/2412-6179-2017-41-2-192-201.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20