A resonance system of an optoelectronic oscillator based on a transmission-type planar optical disk microcavity
Zadorin A.S., Lukina A.A
.

 

Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia,

Micran Research & Production Company, Tomsk, Russia

 PDF

Abstract:
It is noted that the best technical characteristics of optoelectronic microwave self-oscillators (OESO) are reached in schemes employing high-Q optical microresonators (OMR) working in the traveling wave modes (TWM). A possibility of using disk OMRs excited by fundamental whispering gallery modes (WGM) has been considered. Multielement coupling devices (CD) for such resonators have been investigated. They are constructed on the basis of planar optical waveguides (POWG) located over the disk resonator surface in a region bounded by the outer and inner caustics of the WGM. Models of this device have been proposed. The corresponding calculations have been provided.

Keywords:
optoelectronic microwave oscillator, “whispering gallery” mode, traveling wave, microresonator.

Citation:
Zadorin AS, Lukina AA. A resonance system of an optoelectronic oscillator based on a transmission-type planar optical disk microcavity. Computer Optics 2018; 42(1): 60-66. DOI: 10.18287/2412-6179-2018-42-1-60-66.

References:

  1. IEEE Standard 1139-2008. IEEE Standard definitions of physical quantities for fundamental frequency and time metrology – random instabilities. New York; 2009. ISBN: 978-0-7381-6856-2.
  2. Leeson DB. A simple model of the feedback oscillator noise spectrum. Proceedings of the IEEE 1966; 54(2): 329-330. DOI: 10.1109/PROC.1966.4682.
  3. Yao XS, Maleki L. Optoelectronic microwave oscillator. JOSA B 1996; 13(8): 1725-1735. DOI: 10.1364/JOSAB.13.001725.
  4. Paul D. A review of optoelectronic oscillators for high speed signal processing applications. ISRN Electronics Volume 2013; 2013: 401969.  DOI: 10.1155/2013/401969.
  5. Gorodetsky ML. Ultimate Q of optical microresonators [In Russian]. Moscow: "Fizmatlit" Publisher; 2011. ISBN: 978-5-9221-1283-3.
  6. Tsarapkin DP. Metods for generating microwave ocsillations with a minimum level of phase-noise [In Russian]. The thesis for the Doctor’s degree in Technical Sciences. Moscow; 2004.
  7. Egorov VN. Microwave dielectric resonators in physical measurements [In Russian]. The thesis for the Doctor’s of Physical and Mathematical Sciences. Irkutsk; 2013.
  8. Ilchenko ME, ed. Dielectric resonators [In Russian]. Moscow: "Radio i Svyazj" Publisher; 1989. ISBN: 5-256-00217-1.
  9. Tsarapkin D, Shtin N. Whispering gallery traveling interferometer for low phase noise applications. Proc 2004 IEEE International Frequency Control Symposium and Exposition 2004: 762-765. DOI: 10.1109/FREQ.2004.1418562.
  10. Merrer PH, Brahimi H, Llopis O. Optical techniques for microwave frequency stabilization: resonant versus delay line approaches and related modelling problems. MWP/APMP 2008: 146-149.  DOI: 10.1109/MWP.2008.4666657.
  11. Volyanskiy K, Salzenstein P, Tavernier H, Pogurmirskiy M, Chembo YK, Larger L. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation. Opt Express 2010; 18(21): 22358-22363. DOI: 10.1364/OE.18.022358.
  12. Merrer P-H, Saleh K, Llopis O, Berneschi S, Cosi F, Conti GN. Characterization technique of optical whispering gallery mode resonators in the microwave frequency domain for optoelectronic oscillators. Appl Opt 2012; 51(20): 4742-4748. DOI: 10.1364/AO.51.004742.
  13. Maleki L. High performance optical oscillators for microwave and mm-wave applications. Microwave Journal 2013; 56(10): 106-118.
  14. Saleh K, Merrer P, Ali-Slimane A, Llopis O, Cibiel G. Study of the noise processes in microwave oscillators based on passive optical resonators. International Journal of Microwave and Wireless Technologies 2012; 5(3): 371-380.
  15. Duy NL, Nam LVH, Yem VV, Vivien L, Cassan E, Journet B. Materials used for the optical section of an optoelectronic oscillator. Adv Nat Sci: Nanosci Nanotechnol 2010; 1(4): 045008. DOI: 10.1088/2043-6262/1/4/045008.
  16. Marcatili EA. Bends in optical dielectric guides. Bell Labs Technical Journal 1969; 48(7): 2103-2132. DOI: 10.1002/j.1538-7305.1969.tb01167.x.
  17. Lou F, Thylen L, Wosinski L. Experimental demonstration of silicon-based metallic whispering gallery mode disk resonators and their thermo-tuning. The Optical Fiber Communication Conference and Exposition (OFC) 2014: Tu2E.1. DOI: 10.1364/OFC.2014.M2I.2.
  18. Tamir T, ed. Guided-wave optoelectronics. Berlin, Heidelberg: Springer Verlag; 1988. ISBN: 978-3-642-97076-4.
  19. Haus HA. Waves and fields in optoelectronics. Englewood Cliffs, NJ: Prentice-Hall, Inc.; 1984. ISBN: 0-13-946053-5.
  20. CST Microwave Studio® 2010. Workflow & Solver Overview. Source: <http://eee.guc.edu.eg/Courses/Communications/COMM905%20Advanced%20Communication%20Lab/Sessions/MWS_Tutorials.pdf>.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20