Modeling spectral properties of transparent matrix composites  containing core-shell nanoparticles
Kalenskii A.V., Zvekov A.A., Galkina E.V., Nurmuhametov D.R.

Kemerovo State University, Kemerovo, Russia,
Federal Research Center of Coal and Coal Chemistry SB RAS (Institute of Coal Chemistry and Material Science), Kemerovo, Russia

 PDF

Abstract:
Optical properties of transparent matrix composites containing metal nanoparticles coated with an oxide shell were numerically simulated based on the Aden-Kerker theory applicable for concentric spheres. Using pentaerythritol tetranitrate composites (containing Al/Al2O3 nanoparticles) as an example,  the linear scattering and absorption coefficients as well as the total reflectance and transmittance and collimated beam transmittance were shown to be determined by the sample thickness, the nanoparticle radius, the mass fraction of nanoparticles, and mass fraction of the oxide in the nanoparticles. An approach to determining the said parameters based on the comparison of the calculated spectral dependencies of the reflectance and transmittance with the experimental ones was suggested. The nanoparticle radius was determined with the minimum error (of about 2-3%), while the nanoparticle mass fraction and oxide mass fraction were weak parameters determined with a 25% error.

Keywords:
radiative transfer, Aden-Kerker theory, core-shell nanoparticles, spectra, experimental results processing, optical properties.

Citation:
Kalenskii AV, Zvekov AA, Galkina EV, Nurmuhametov DR. Modeling spectral properties of transparent matrix composites  containing core-shell nanoparticles. Computer Optics 2018; 42(2): 254-262. DOI: 10.18287/2412-6179-2018-42-2-254-262.

References:

  1. Bratchenko IA, Alonova MV, Myakinin OO, Moryatov AA, Kozlov SV, Zakharov VP. Hyperspectral visualization of skin pathologies in visible region. Computer Optics 2016; 40(2): 240-248. DOI: 10.18287/2412-6179-2016-40-2-240-248.
  2. Lisenko SA, Kugeiko MM. Method for calculating the optical diffuse reflection coefficient for the ocular fundus. J Appl Spectros 2016; 83(3): 412-421. DOI: 10.1007/s10812-016-0303-4.
  3. Petruk VG, Ivanov AP, Kvaternyuk SM, Barun VV. Spectrophotometric method for differentiation of human skin melanoma. II. Diagnostic Characteristics. J Appl Spectros 2016; 83(2): 261-270. DOI: https://doi.org/10.1007/s10812-016-0279-0.
  4. Toon GC, Blavier J-F, Sung K, Rothman LS, Gordon IE. HITRAN spectroscopy evaluation using solar occultation FTIR spectra. J Quant Spectrosc Radiat Transf 2016; 182: 324-336. DOI: https://doi.org/10.1016/j.jqsrt.2016.05.021.
  5. Wang C, Chen Q, Hussain M, Wu S, Chen J, Tang Z. Application of Principal Component Analysis to Classify Textile Fibers Based on UV-Vis Diffuse Reflectance Spectroscopy. J Appl Spectros 2017; 84(3): 391-395. DOI: https://doi.org/10.1007/s10812-017-0481-8.
  6. Aduev BP, Nurmukhametov DR, Zvekov AA, Nikitin AP, Nelyubina NV, Belokurov GM, Kalenskii AV. Determining the optical properties of light-diffusing systems using a photometric sphere. Instruments and Experimental Techniques 2015; 58(6): 765-770. DOI: 10.1134/S0020441215050012.
  7. Guévelou S, Rousseau B, Domingues G, Vicente J. A simple expression for the normal spectral emittance of open-cell foams composed of optically thick and smooth struts. J Quant Spectrosc Radiat Transf 2017; 189: 329-338. DOI: 10.1016/j.jqsrt.2016.12.011.
  8. Nel’ubina NV, Pidgirny MP, Bulgakova ON, Zvekov AA, Kalenskii AV. Peculiarities of spectral measurements of colored suspensions in thick-walled cuvettes. Computer Optics 2016; 40(4): 508-515. DOI: 10.18287/2412-6179-2016-40-4-508-515.
  9. Herbin H, Pujol O, Hubert P, Petitprez D. New approach for the determination of aerosol refractive indices – Part I: Theoretical bases and numerical methodology. J Quant Spectrosc Radiat Transf 2017; 200: 311-319. DOI: 10.1016/j.jqsrt.2017.03.005.
  10. Hubert P, Herbin H, Visez N, Pujol O, Petitprez D. New approach for the determination of aerosol refractive indices – Part II: Experimental set-up and application to amorphous silica particles. J Quant Spectrosc Radiat Transf 2017; 200: 320-327. DOI: 10.1016/j.jqsrt.2017.03.037.
  11. Aduev BP, Nurmukhametov DR, Belokurov GM, Zvekov AA, Kalenskii AV, Nikitin AP Liskov IY. Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite. Tech Phys 2014; 59(9): 1387-1392. DOI: 10.1134/S1063784214090023
  12. Mostovshchikov AV, Ilyin AP, Zakharova MA. Structural and Energy State of Electro-Explosive Aluminum Nanopowder. Key Engineering Materials 2016; 712: 215-219. DOI: 10.4028/www.scientific.net/KEM.712.215.
  13. Ilyin AP, Nazarenko OB. Problems of perfection of electroexplosive technology of nanopowders producrtion [In Russian]. Izvestia VUSov. Chemistry and Chem Technology 2008; 51(7): 61-64.
  14. Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ. Aluminum for Plasmonics. ACS Nano 2014; 8(1): 834-840. DOI: 10.1021/nn405495q.
  15. Parashar PK, Sharma RP, Komarala VK. Plasmonic silicon solar cell comprised of aluminum nanoparticles: Effect of nanoparticles' self-limiting native oxide shell on optical and electrical properties. J Appl Phys 2016; 120: 143104. DOI: 10.1063/1.4964869.
  16. Temple TL, Bagnall DM. Optical properties of gold and aluminium nanoparticles for silicon solar cell applications. J Appl Phys 2011; 109: 084343. DOI: 10.1063/1.3574657.
  17. Aduev BP, Nurmukhametov DR, Zvekov AA, Nelyubina NV. Influence of the mass fraction of oxide in aluminum nanoparticles on the explosive decomposition threshold and light absorption efficiency in PETN based compounds. Combustion, Explosion, and Shock Waves 2014; 50(5) 578-581. DOI: 10.1134/S001050821405013X.
  18. Aduev BP, Nurmukhametov DR, Belokurov GM, Furega RI. Studies of the contribution of light scattering and absorption by inclusions of aluminum nanoparticlese in PETN. Combustion, Explosion, and Shock Waves 2015; 51(3) 347-352. DOI: 10.1134/S0010508215030107.
  19. Klimov VV. Nanoplasmonics. New York: Pan Stanford Publishing; 2014. ISBN: ‎978-981-4267-16-8.
  20. Rasskazov IL, Karpov SV, Markel VA. Surface plasmon polaritons in curved chains of metal nanoparticles. Phys Rev B 2014; 90(7): 075405. DOI: 10.1103/PhysRevB.90.075405.
  21. Aden AL, Kerker M. Scattering of Electromagnetic Waves from Two Concentric Spheres. J Appl Phys 1951; 22(10): 1242-1246. DOI: 10.1063/1.1699834.
  22. Shifrin KS. Light scattering in turbid medium. National Aeronautics and Space Administration; 1968.
  23. Kriger VG, Kalenskii AV, Zvekov AA, Zykov IYu, Aduev BP. Effect of laser radiation absorption efficiency on the heating temperature of inclusions in transparent media. Combustion, Explosion, and Shock Waves 2012; 48(6): 705-708. DOI: 10.1134/S001050821206007X.
  24. Zvekov AA, Kalenskii AV, Nikitin AP, Aduev BP. Radiance distribution simulation in a transparent medium with Fresnel boundaries containing aluminum nanoparticles. Computer Optics 2014; 38(4): 749-756.
  25. Zvekov AA, Kalenskii AV, Aduev BP, Ananyeva MV. Calculation of the optical properties of pentaerythritol tetranitrate – cobalt nanoparticle composites. J Appl Spectr 2015; 82(2): 213-220. DOI: 10.1007/s10812-015-0088-x.
  26.  Kalenskii AV, Zvekov AA, Nikitin AP, Gazenaur NV. Optical properties of composites based on a transparent matrix and copper nanoparticles. Russian Physics Journal 2016. 59(2); 263-272. DOI: 10.1007/s11182-016-0766-z.
  27. Palik ED, ed. Handbook of optical constants of solids. Vol. II. San Diego: Academic Press; 1998. ISBN: ‎978-0-12-544415-6.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20