A non-coherent holographic correlator based on a digital micromirror device
Rodin V.G.

 

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia

 PDF

Abstract:
The possibility of application of a digital micromirror device (DMD) as a spatial light modulator for outputting holographic filters in an optical correlator illuminated by quasi-monochromatic spatially incoherent radiation was discussed. The experimental setup of the optical correlator was assembled using a one-lens scheme. Experiments on the recognition of test objects with the synthesized dynamic holographic filters being output onto the DMD were performed. The results obtained allow one to conclude that object recognition can be successfully performed using the proposed scheme of a non-coherent correlator containing a digital micromirror device.

Keywords:
digital micromirror device (DMD), spatial light modulators, incoherent optical radiation, сorrelators, holographic optical elements.

Citation:
Rodin VG. A non-coherent holographic correlator based on a digital micromirror device. Computer Optics 2018; 42(3): 347-353. DOI: 10.18287/2412-6179-2018-42-3-347-353.

References:

  1. Lugt AV. Signal detection by complex spatial filtering. IEEE Trans Inform Theory 1964; 10(2): 139-145. DOI: 10.1109/TIT.1964.1053650.
  2. Weaver CS, Goodman JW. A technique for optically convolving two functions. Appl Opt 1966; 5(7): 1248-1249. DOI: 10.1364/AO.5.001248.
  3. Vasilenko GI, Tsibulkin LM. Holographic recognition devices [In Russian]. Moscow: “Radio i svyaz” Publisher; 1985.
  4. Lohmann AW Matched filtering with self-luminous objects. Appl Opt 1968; 7(3): 561_1-563. DOI: 10.1364/AO.7.0561_1.
  5. Potaturkin OI, Khotskin VI. Holographic method of image processing in space-incoherent monochromatic light [In Russian]. In book: Guravich SB, ed. Optical Data Processing Leningrad: “LIYaPh” Publisher; 1979: 61-66.
  6. Juday RD. Correlation with a spatial light modulator having phase and amplitude cross coupling. Appl Opt 1989; 28(22): 4865-4869. DOI: 10.1364/AO.28.004865.
  7. Vasil'ev AA, Casasent D, Kompanets IN, Parfenov AV. Spatial light modulators [In Russian]. Moscow: “Radio i svyaz” Publisher; 1987.
  8. Rózanski SA, Pauwels H Joint transform correlation using a ferroelectric liquid crystal spatial light modulator. Proc SPIE 2001; 4535: 126-131. DOI: 10.1117/12.438434.
  9. Chao T-H, Zhou H, Reyes G. Compact 512 x 512 grayscale optical correlator. Proc SPIE 2002; 4734: 9-12. DOI: 10.1117/12.458412.
  10. Watanabe E, Kodate K. Fast face-recognition optical parallel correlator using high accuracy correlation filter. Opt Rev 2005; 12(6): 460-466. DOI: 10.1007/s10043-005-0460-9.
  11. Xiao G, Zhou P, Li X, Jia H, Fan Z, Yu S. A novel compact parallel optical correlator. Proc SPIE 2009; 7513: 75131V. DOI: 10.1117/12.837947.
  12. Zeng X, Bai J, Hou C, Yang, G. Compact optical correlator based on one phase-only spatial light modulator. Opt Lett 2011; 36(8): 1383-1385. DOI: 10.1364/OL.36.001383.
  13. Evtikhiev NN, Starikov SN, Protsenko ED, Zlokazov EYu, Solyakin IV, Starikov RS, Shapkarina EA, Shaulskiy DV Model of an invariant correlator with liquid-crystal spatial light modulators. Quantum Electronics 2012; 42(11): 1039-1041. DOI: 10.1070/QE2012v042n11ABEH015009.
  14. Tang M, Wu J. Optical correlation recognition based on LCOS. Proc SPIE 2013; 8913: 89130F. DOI: 10.1117/12.2032960.
  15. Cheremkhin PA, Evtikhiev NN, Krasnov VV, Rodin VG, Starikov SN. Reduction of phase temporal fluctuations caused by digital voltage addressing in LC SLM “HoloEye PLUTO VIS” for holographic applications. Proc SPIE 2014; 9006: 900615. DOI: 10.1117/12.2037569.
  16. Cheremkhin PA, Evtikhiev NN, Krasnov VV, Rodin VG, Starikov SN. Increasing reconstruction quality of diffractive optical elements displayed with LC SLM. Proc SPIE 2014; 9386: 93860R. DOI: 10.1117/12.2079011.
  17. Hornbeck LJ, Nelson WE Bistable deformable mirror device. OSA Techn Digest Series 1988; 8: 107-110.
  18. Nesbitt RS, Smith SL, Molnar RA, Benton SA Holographic recording using a digital micromirror device. Proc SPIE 1999; 3637: 12-20. DOI: 10.1117/12.343767.
  19. Kreis T, Aswendt P, Höfling R. Hologram reconstruction using a digital micromirror device. Opt Eng 2001; 40(6): 926-933. DOI: 10.1117/1.1367346.
  20. Florence JM, Gale RO. Coherent optical correlator using a deformable mirror device spatial light modulator in the Fourier plane. Appl Opt 1988; 27(11): 2091-2093. DOI: 10.1364/AO.27.002091.
  21. Hudson TD, Trivett DW, Gregory DA, Kirsch JC. Real time optical correlator architectures using a deformable mirror spatial light modulator. Appl Opt 1989; 28(15): 4853-4860. DOI: 10.1364/AO.28.004853.
  22. Chao T-H, Lu TT High-speed optical correlator with custom electronics interface design. Proc SPIE 2013; 8748: 874803. DOI: 10.1117/12.2018262.
  23. Chao T-H, Lu TT, Walker B, Reyes G. High-speed optical processing using digital micromirror device. Proc SPIE 2013; 9094: 909402. DOI: 10.1117/12.2054349.
  24. Shaulskiy DV, Evtikhiev NN, Zlokazov EYu, Starikov SN, Starikov RS, Petrova EK, Molodtsov DYu. Variants of light modulation for MINACE filter implementation in 4-F correlators. Proc SPIE 2015; 9598: 95980T. DOI: 10.1117/12.2190700.
  25. Molodtsov DYu, Rodin VG. Object recognition in non-coherent optical correlator based on DMD-modulator illumination. Proc SPIE 2016; 10176: 101761A. DOI: 10.1117/12.2268159.
  26. Molodtsov DYu, Cheremkhin PA, Krasnov VV, Rodin VG. Impact of DMD-SLMs errors on reconstructed Fourier holograms quality. J Phys: Conf Ser 2016; 737: 012074. DOI: 10.1088/1742-6596/737/1/012074.
  27. Molodtsov DYu, Rodin VG, Starikov SN The possibility of using DMD-SLM for hologram filters displaying in dispersive correlator. Physics Procedia 2015; 73: 338-342. DOI: 10.1016/j.phpro.2015.09.155.
  28. Cheremkhin PA, Evtikhiev NN, Krasnov VV, Rodin VG, Starikov SN. Modified temporal noise measurement method with automatic segmentation of non-uniform target, its accuracy estimation and application to cameras of different types. Opt Eng 2014; 53(10): 102107. DOI: 10.1117/1.OE.53.10.102107.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20