Distribution of the complex amplitude and intensity in a 3D scattering pattern formed by the optical system for an on-axis point object
Koreshev S.N., Smorodinov D.S., Nikanorov O.V., Frolova M.A.

 

St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St .Petesrburg, Russia

 PDF

Abstract:
A quantitative evaluation of the depth of field of optical systems is given. Results of the calculation of the distribution of the complex amplitude and intensity in a three-dimensional scattering pattern formed by the optical system for an on-axis point object are presented. The work was carried out as part of developing optical systems with an extended depth of field for a synthesized hologram of a point object located on a perpendicular constructed to the hologram center.

Keywords:
depth of field, 3D scattering pattern, path difference, phase difference, vector sum, synthesis of holograms.

Citation:
Koreshev SN, Smorodinov DS, Nikanorov OV, Frolova MA. Distribution of the complex amplitude and intensity in a 3D scattering pattern formed by the optical system for an on-axis point object. Computer Optics 2018; 42(3): 377-384. DOI: 10.18287/2412-6179-2018-42-3-377-384.

References:

  1. Iofis EA. Photo and movie technologies [In Russian]. Moscow: “Sovetskaya Enciklopedia” Publisher; 1981.
  2. Shekhonin AA, ed, Tsukanova GI, Karpova GV, Bagdasarova OV, Karpov VG, Krivopustova YeV, Yezhova KV. Applied optics. Part 2. Study guide [In Russian]. Saint-Petersburg: “SPb GITMO (TU)” Publisher, 2003.
  3. Volosov DS. Photographic optic. Study guide [In Russian]. Moscow: “Iskusstvo” Publisher; 1978.
  4. Françon M. La granularité laser (speckle) et ses applications en optique. Paris: Institut d'Optique et Universite de Paris; 1978.
  5. Castro A, Ojeda-Castañeda J. Asymmetric phase masks for extended depth of field. Appl Opt 2004; 43(17): 3474-3479. DOI: 10.1364/AO.43.003474.
  6. Shain WJ, Vickers NA, Goldberg BB, Bifano T, Mertz J. Extended depth-of-field microscopy with a high-speed deformable mirror. Opt Lett 2017; 42(5): 995-998. DOI: 10.1364/OL.42.000995.
  7. Basov IV, Krasnobaev AA. Methods of depth-of-field extending of optical-digital image detectors [In Russian]. Keldysh Institute preprints 2010; 037.
  8. Koreshev SN, Nikanorov OV, Frolova MA, Novitskaya YaA, Khisamov RI. Methods of increasing the resolving power and depth of field of synthesized hologram-projectors. J Opt Technol 2016; 83(12): 760-764. DOI: 10.1364/JOT.83.000760.
  9. Born M, Wolf E. Principles of optics. 4th ed. Oxford, London, Edinburg, New York, Paris, Frankfurt: Pergamon Press; 1970.
  10. Landsberg GS. Optic [In Russian]. Moscow: “Fizmatlit” Publisher; 2003. ISBN: 5-9221-0314-8.
  11. Fiсhtenholz GM. Course of differential and integral calculus. Vol 1 [In Russian]. Moscow: “Fizmatlit” Publisher; 2003.
  12. Koreshev SN, Smorodinov DS, Nikanorov OV. Imaging properties of discrete holograms. I. How the discreteness of a hologram affects image recontruction. J Opt Technol 2014; 81(3): 123-127. DOI: 10.1364/JOT.81.000123.
  13. Martínez-León L, Clemente P, Mori Y, Climent V, Lancis J, Tajahuerce E. Single-pixel digital holography with phase-encoded illumination. Opt Express 2017; 25(5): 4975-4984. DOI: 10.1364/OE.25.004975.
  14. Nikanorov OV, Ivanov JuA, Koreshev SN. Software for the synthesis and digital reconstruction of hologram projectors. [In Russian]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics 2009; 63(5): 42-47.
  15. Rodionov SA. Principles of optics. Lecture notes [In Russian]. Saint-Petersburg: “SPb GITMO (TU)” Publisher; 2000.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20