A spirally rotating backward flow of light
Kotlyar V.V., Nalimov A.G.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
Using Richards-Wolf formulas, we show that when a left-hand circularly polarized optical vortex with the topological charge 3 is sharply focused in an aplanatic system, a backward near-axis energy flow is observed in the focal plane. While being zero on the axis, the backward flow is only 2-3 times smaller in magnitude than the incident energy flow coming to the focus. It is also shown that near the optical axis the reverse flow propagates spiraling counter-clockwise about the optical axis. The presence of the near-axis backward flow of energy is also shown by the FDTD-aided numerical simulation of diffraction of a circularly polarized plane wave by a third-order spiral zone plate with the NA ≈ 1. A Rayleigh microparticle captured in the focus vicinity is expected to move in the opposite direction to the beam propagation.

Keywords:
backward energy flow, optical vortex, rotating beams, Umov–Poynting vector.

Citation:
Kotlyar VV, Nalimov AG. A spirally rotating backward flow of light. Computer Optics 2018; 42(4): 527-533. DOI: 10.18287/2412-6179-2018-42-4-527-533.

References:

  1. Richards B, Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc R Soc A 1959; 253(1274): 358-379. DOI: 10.1098/rspa.1959.0200.
  2. Novitsky AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A 2007; 24(9): 2844-2849. DOI: 10.1364/JOSAA.24.002844.
  3. Monteiro PB, Neto PAM, Nussenzveig HM. Angular momentum of focused beams: Beyond the paraxial approximation. Phys Rev A 2009; 79(3): 033830. DOI: 10.1103/PhysRevA.79.033830.
  4. Sukhov S, Dogariu A. On the concept of “tractor beams”. Opt Lett 2010; 35(22): 3847-3849. DOI: 10.1364/OL.35.003847.
  5. Kotlyar VV, Nalimov AG. A vector optical vortex generated and focused using a metalens. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  6. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33(9): 1661-1667. DOI: 10.1364/JOSAA.33.001661.
  7. Salem MA, Bagci H. Energy flow characteristics of vector X-wave. Opt Express 2011; 19(9): 8526-8532. DOI: 10.1364/OE.19.008526.
  8. Vaveliuk P, Martinez-Matos O. Negative propagation effect in nonparaxial Airy beams. Opt Express 2012; 20(24): 26913-26921. DOI: 10.1364/OE.20.026913.
  9. Berry MV. Quantum backflow, negative kinetic energy, and optical retro-propagation. J Phys A: Mathem & Theor 2010; 43(41): 415302. DOI: 10.1088/1751-8113/43/41/415302.
  10. Kotlyar VV, Nalimov AG, Stafeev SS. The near-axis backflow of energy in a tightly focused optical vortex with circular polarization. Computer Optics 2018; 42(3): 392-400. DOI: 10.18287/2412-6179-2018-42-3-392-400.
  11. Chen B, Po J. Tight focusing of elliptically polarized vortex beams. Appl Opt 2009; 48(7): 1288-1294. DOI: 10.1364/AO.48.001288.
  12. Dogariu A, Sukhov S, Sáenz J. Optically induced 'negative forces'. Nat Photon 2012; 7(1): 24-27. DOI: 10.1038/nphoton.2012.315.
  13. Shvedov V, Davoyan AR, Hnatovsky C, Engheta N, Krolikowski W. A long-range polarization-controlled optical tractor beam. Nat Photon 2014; 8(11): 846-850. DOI: 10.1038/nphoton.2014.242.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20