Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams
Volyar A.V., Bretsko M.V., AkimovaYa.E., Egorov Yu.A.

 

Physics and Technology Institute (Academic Unit) of V.I. Vernadsky Crimean Federal University, Academician Vernadsky 4, 295007, Simferopol, Russia

 PDF

Abstract:
The paper presents a new method for measuring the vortex spectrum (amplitude squares and initial phases) as well as the orbital angular momentum without cuts and splices of the wave front of a vortex array. Such an extension of the measurement capabilities of the combined beam properties is achieved by recording the intensity moments of the light beam as a whole without destroying its internal structure. The correlation coefficient between the initial intensity distribution and the intensity distribution taking into account the experimentally obtained vortex spectrum reaches 91%, which indicates the reliability of the presented method.

Keywords:
diffractive optics, image processing, optical vortices, orbital angular momentum, moments of intensity.

Citation:
Volyar AV, Bretsko MV, AkimovaYaE, Egorov YuA. Beyond the light intensity or intensity moments and measurements of the vortex spectrum in complex light beams. Computer Optics 2018; 41(1): 736-743. DOI: 10.18287/2412-6179-2017-42-5-736-743.

References:

  1. Gbur GJ. Singular optics. New York: CRC Press; 2017. ISBN: 978-1-4665-8077-0.
  2. Soifer VA, Golub MA. Laser beam mode selection by computer-generated holograms. Boca Raton: CRC Press; 1994. ISBN: 978-0-8493-2476-5.
  3. Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 2012; 6: 488-496. DOI: 10.1038/nphoton.2012.138.
  4. Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001; 412(6844):313-316. DOI: 10.1038/35085529.
  5. Singh H, Gupta DL, Singh AK. Quantum key distribution protocols: A review. Journal of Computer Engineering 2014; 16(2): 1-9. DOI: 10.9790/0661-162110109.
  6. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  7. Khonina SN, Kotlyar VV, Soifer VA, Paakkonen P, Turunen J. Measuring the light field orbital angular momentum using DOE. Optical Memory and Neural Networks 2001; 10(4): 267-276.
  8. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode selfimaging. In Book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Chap 15. Rijeka, Croatia: InTech; 2012: 327-352. DOI: 10.5772/28067.
  9. Kirilenko MS, Khonina SN. Information transmission using optical vortices. Optical Memory and Neural Networks 2013; 22(2): 81-9.
  10. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 2004; 12(22): 5448-5456. DOI: 10.1364/OPEX.12.005448.
  11. Allen L, Padgett MJ, Babiker M. IV the orbital angular momentum of light. Progress in Optics 1999; 39: 291-372. DOI: 10.1016/S0079-6638(08)70391-3.
  12. Qassim H, Miatto FM, Torres JP, Padgett MJ, Karimi E, Boyd RW. Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement. J Opt Soc Am B 2014; 31(6): A20-A23. DOI: 10.1364/JOSAB.31.000A20.
  13. Alexeyev CN, Egorov YuA, Volyar AV. Mutual transformations of fractional-order and integer-order optical vortices. Phys Rev A 2017; 96(6): 063807. DOI: 10.1103/PhysRevA.96.063807.
  14. Volyar AV, Egorov YuA. Super pulses of orbital angular momentum in fractional-order spiroid vortex beams. Opt Lett 2018; 43(1): 74-77. DOI: 10.1364/OL.43.000074.
  15. Alperin SN, Niederiter RD, Gopinath JT, Siements KE. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt Lett 2016; 41(21): 5019-5022. DOI: 10.1364/OL.41.005019.
  16. Wigner EP. On the quantum correction for thermodynamic equilibrium. Phys Rev 1932; 40: 749-759. DOI: 10.1103/PhysRev.40.749.
  17. Hu MK. Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 1962; 8(2): 179-187. DOI: 10.1109/TIT.1962.1057692.
  18. Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995. ISBN: 978-0-521-41711-2.
  19. Flusser J, Suk T, Zitová B. Moments and moment invariants in pattern recognition. Chichester, UK: John Wiley & Sons; 2009. ISBN: 978-0-470-69987-4.
  20. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton, FL: CRC Press; 2018. ISBN: 978-1-1385-4211-2.
  21. Abramochkin EG, Volostnikov VG. Spiral light beams. Phys Usp 2004, 47(12), 1177-1203. DOI: 10.1070/PU2004v047n12ABEH001802.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20