Propagation of electromagnetic pulses and calculation of dynamic invariants in a waveguide with a convex shell
Kharitonov S.I.
, Volotovsky S.G., Khonina S.N., Kazanskiy N.L.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
In this paper, we consider a method for solving a system of Maxwell's equations in the case of time-dependent boundary conditions at the end of a waveguide with superconducting walls. An explicit analytical solution is obtained for a quasi-harmonic signal whose pulse width in the frequency domain is much smaller than the carrier frequency. Numerical examples are calculated in the case of a Gaussian pulse as a superposition of modes propagating in a circular hollow metal waveguide. The calculation of dynamic invariants of short pulses propagating in a waveguide with an arbitrarily-shaped conducting shell is considered. A procedure for quantizing an electromagnetic field in a waveguide with superconducting walls is described.

Keywords:
waveguide modes, field pulse, dynamic invariants, electromagnetic field quantization.

Citation:
Kharitonov SI, Volotovsky SG, Khonina SN, Kazanskiy NL. Propagation of electromagnetic pulses and calculation of dynamic invariants in a waveguide with a convex shell. Computer Optics 2018, 42(6): 947-958. DOI: 10.18287/2412-6179-2018-42-6-947-958.

References:

  1. Gloge D. Weakly guided fibers. Appl Opt 1971; 10(10): 2252-2258. DOI: 10.1364/AO.10.002252.
  2. Cherin AH. An introduction to optical fibers. Singapore: McGraw-Hill College; 1983. ISBN: 978-0-07-010703-8.
  3. Snyder AW, Love JD. Optical waveguide theory. Boston, Dordrecht, London: Kluwer Academic Publishers; 1983. ISBN: 978-0-412-09950-2.
  4. Yeh C. Handbook of fiber optics: Theory and applications. New York: Academic Press Inc; 1990. ISBN: 978-0-12-770455-5.
  5. Agrawal GP. Fiber-optic communication systems. 3rd ed. New York: John Wiley & Sons Inc; 2002. ISBN: 978-0-471-21571-4.
  6. Marcatili EAT, Schmeltzer RA. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. The Bell System Technical Journal 1964; 43(4): 1783-1809. DOI: 10.1002/j.1538-7305.1964.tb04108.x.
  7. Miyagi M, Kawakami S. Design theory of dielectric-coated circular metallic waveguides for infrared transmission. J Lightw Technol 1984; 2(2): 116-126. DOI: 10.1109/JLT.1984.1073590.
  8. Kotlyar VV, Soifer VA, Khonina SN. Rotation of multimodal Gauss-Laguerre light beams in free space and in a fiber. Opt Las Eng 1998; 29(4-5): 343-350. DOI: 10.1016/S0143-8166(97)00121-8.
  9. Khonina SN, Striletz AS, Kovalev AA, Kotlyar VV. Propagation of laser vortex beams in a parabolic optical fiber. Proc SPIE 2010; 7523: 75230B. DOI: 10.1117/12.854883.
  10. Wang CY. Determination of TM and TE modes of the circular waveguide with a cross-shaped insert using eigenfunction expansions and domain matching, Journal of Electromagnetic Waves and Applications 2016; 30(10): 1334-1344. DOI: 10.1080/09205071.2016.1199331
  11. Jauch JM, Watson KM. Phenomenological quantum-electrodynamics. Phys Rev 1948; 74(8): 950. DOI: 10.1103/PhysRev.74.950.
  12. Wu TT. Quantization of the electromagnetic field. Phys Rev 1963; 129(3): 1420-1423. DOI: 10.1103/PhysRev.129.1420.
  13. Carniglia CK, Mandel L. Quantization of evanescent electromagnetic waves. Phys Rev D 1971; 3(2): 280. DOI: 10.1103/PhysRevD.3.280.
  14. von Foerster T, Glauber RJ. Quantum theory of light propagation in amplifying media. Phys Rev A 1971; 3(4): 3. DOI: 10.1103/PhysRevA.3.1484.
  15. Knoll L, Vogel W, Welsch D-G. Action of passive, lossless optical systems in quantum optics. Phys Rev A 1987; 36(8): 3803-3818. DOI: 10.1103/PhysRevA.36.3803.
  16. Glauber RJ, Lewenstein M. Quantum optics of dielectric media. Phys Rev A 1991; 43(1): 467-491. DOI: 10.1103/PhysRevA.43.467.
  17. Klimov VV, Letokhov VS. Vacuum splitting of the energy levels of a system consisting of an atom and a dielectric microsphere. Journal of Experimental and Theoretical Physics 1997; 84(1): 24-28. DOI: 10.1134/1.558148.
  18. Matloop R. Electromagnetic field quantization in an absorbing medium. Phys Rev A 1999; 60(1): 50. DOI: 10.1103/PhysRevA.60.50.
  19. Kharitonov SI, Khonina SN. Conversion of a conical wave with circular polarization into a vortex cylindrically polarized beam in a metal waveguide [In Russian]. Computer Optics 2018; 42(2): 197-211. DOI: 10.18287/2412-6179-2018-42-2-197-211.
  20. Kharitonov SI, Volotovsky SG, Khonina SN. Calculation of the angular momentum of an electromagnetic field inside a waveguide with absolutely conducting walls [In Russian]. Computer Optics 2018; 42(4): 588-605. DOI: 10.18287/2412-6179-2018-42-4-588-605.
  21. Khonina SN, Kotlyar VV, Soifer VA, Jefimovs K, Turunen J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J Mod Opt 2004; 51(5): 761-773. DOI: 10.1080/09500340408235551.
  22. Khonina SN, Kazanskiy NL, Soifer VA. Optical vortices in a fiber: mode division multiplexing and multimode self-imaging. In Book: Yasin M, Harun SW, Arof H, eds. Recent progress in optical fiber research. Ch 15. Rijeka, Croatia: InTech; 2012: 327-352. DOI: 10.5772/28067.
  23. Ramachandran S, Kristensen P. Optical vortices in fiber, Nanophotonics 2013; 2(5-6): 455-474. DOI: 10.1515/nanoph-2013-0047.
  24. Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner AE, Ramachandran S. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 2013; 340(6140): 1545-1548. DOI: 10.1126/science.1237861.
  25. Kirilenko MS, Khonina SN. Information transmission using optical vortices. Optical Memory and Neural Networks 2013; 22(2): 81-89. DOI: 10.3103/S1060992X13020069.
  26. Berglind E, Bjork G. Humblet’s decomposition of the electromagnetic angular moment in metallic waveguides, IEEE Trans Micro Theory Tech 2014; 2: 779-788. DOI: 10.1109/TMTT.2014.2308891.
  27. Kirilenko MS, Khonina SN. Formation of signals matched with vortex eigenfunctions of bounded double lens system, Opt Commun 2018; 410: 153-159. DOI: 10.1016/j.optcom.2017.09.060.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20