Modeling of the optical vortex generation using a silver spiral zone plate
Kozlova E.S.

 

Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF

Abstract:
Using a FDTD-method implemented in the FullWAVE (RSoft) software, a process of generating optical vortices during the propagation of a left- or right-hand circularly polarized Gaussian pulse through a phase and amplitude spiral zone plate with topological charge 2, a diameter of 8 μm, and a focal length of 532 nm is numerically modeled. An investigation of the amplitude and phase distributions in the focal plane shows the presence of optical vortices with topological charge 2. Analysis of the longitudinal component of the Umov-Poynting vector shows the presence of an inverse energy flow in the focal plane. In the case of using an amplitude spiral zone plate, the magnitude of the reverse flow decreases sharply until it disappears completely for the left circularly polarized incident beams.

Keywords:
optical vortices, spiral zone plate, topological charge, circular polarization, reverse flow, Umov-Poynting vector, FDTD method.

Citation:
Kozlova ES. Modeling of the optical vortex generation using a silver spiral zone plate. Computer Optics 2018; 42(6): 977-984. DOI: 10.18287/2412-6179-2018-42-6-977-984.

References:

  1. Padgett MJ. Orbital angular momentum 25 years on. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  2. Cheng K, Lu G, Zhong X. The Poynting vector and angular momentum density of Swallowtail-Gauss beams. Opt Commun 2017; 396: 58-65. DOI: 10.1016/j.optcom.2017.03.038.
  3. Kotlyar VV, Kovalev AA. Orbital angular momentum of an astigmatic gaussian laser beam [In Russian]. Computer Optics 2017; 41(5): 609-615. DOI: 10.18287/2412-6179-2017-41-5-609-616.
  4. Mafakheri E, Tavabi AH, Lu P, Balboni R, Venturi F, Menozzi C, Gazzadi GC, Frabboni S, Sit A, Dunin-Borkowski RE, Karimi E, Grillo V. Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography. App Phys Lett 2017; 110(4): 093113. DOI: 10.1063/1.4977879.
  5. Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G, Agrawal A, Piestun R, Moerner WE. The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation. Proc SPIE 2013; 8590: 85900L. DOI: 10.1117/12.2001671.
  6. Lavery MPJ, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd RW, Padgett MJ, Marquardt C, Leuchs G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci Adv 2017; 3(10): e1700552. DOI: 10.1126/sciadv.1700552.
  7. Morgan KS, Miller JK, Cochennour BM, Li W, Li Y, Watkins RJ, Johnson EG. Free space propagation of concentric vortices through underwater turbid environments. J Opt 2016; 18(10); 104004. DOI: 10.1088/2040-8978/18/10/104004.
  8. Yu S, Pung F, Liu H, Li X, Yang J, Wang T. Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing. Appl Phys Lett 2017; 111(9): 091107. DOI: 10.1063/1.4989651.
  9. Huang L, Song X, Reineke B, Li T, Li, Liu J, Zhang S, Wang Y, Zentgraf T. Volumetric generation of optical vortices with metasurfaces. ACS Photonics 2017; 4(2): 338-346. DOI: 10.1021/acsphotonics.6b00808.
  10. Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, Fan D. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci Rep 2017; 7: 44096. DOI: 10.1038/srep44096.
  11. Kotlyar VV, Nalimov AG A vector optical vortex generated and focused using a metalens [In Russian]. Computer Optics 2017; 41(5): 645-654. DOI: 10.18287/2412-6179-2017-41-5-645-654.
  12. Sabatyan A, Behjat Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Opt Quant Electron 2017; 49(11): 371. DOI: 10.1007/s11082-017-1211-4.
  13. Zhou Y, Feng S, Nie S, Ma J, Yuan C. Anisotropic edge enhancement with spiral zone plate under femtosecond laser illumination. App Opt 2017; 56(10): 2641-2648. DOI: 10.1364/AO.56.002641.
  14. Wei L, Gao Y, Wen X, Zhao Z, Cao L, Gu Y. Fractional spiral zone plates. J Opt Soc Am A 2013; 30(2): 233-237. DOI: 10.1364/JOSAA.30.000233.
  15. Rafighdoost J, Sabatyan A. Spirally phase-shifted zone plate for generating and manipulating multiple spiral beams. J Opt Soc Am B 2017; 34(3): 608-612. DOI: 10.1364/JOSAB.34.000608.
  16. Ma L, Zhang P, Li Z, Liu C, Li X, Zhang Y, Zhang R, Cheng C. Spatiotemporal evolutions of ultrashort vortex pulses generated by spiral multi-pinhole plate. Opt Express 2017; 25(24): 29864-29873. DOI: 10.1364/OE.25.029864.
  17. Liang Y, Wang E, Hua Y, Xie C, Ye T. Single-focus spiral zone plates. Opt Lett 2017; 42(13): 2663-2666. DOI: 10.1364/OL.42.002663.
  18. Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A. Surface physics, nanoscale physics, low-dimensional systems-Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys Rev B 2005; 71(12): 125435. DOI: 10.1103/PhysRevB.71.125435.
  19. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
  20. Kotlyar VV, Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L, Kozlova ES. Tight focusing of laser light using a chromium Fresnel zone plate. Opt Express 2017; 25(17): 19662-19671. DOI: 10.1364/OE.25.019662.
  21. Kozlova ES, Kotlyar VV, Nalimov AG, Stafeev SS, Kotlyar MV, O'Faolain L. Dependence of the focal spot parameters on the relief height of the amplitude zone plate. Proc 19th International Conference on Transparent Optical Networks 2017: 8025096. DOI: 10.1109/ICTON.2017.8025096.
  22. Vial A, Laroche T, Dridi M, Le Cunff L. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. Appl Phys A 2011; 103(3): 849-853. DOI: 10.1007/s00339-010-6224-9.
  23. Rakić AD, Djurišić AB, Elazar JM, Majewski ML. Optical properties of metallic films for vertical-cavity optoelectronic devices. App Opt 1998; 37(22): 5271-5283. DOI: 10.1364/AO.37.005271.
  24. Stafeev SS, Nalimov AG Longitudinal component of the poynting vector of a tightly focused optical vortex with circular polarization [In Russian]. Computer Optics 2018; 42(2): 190-196. DOI: 10.18287/2412-6179-2018-42-2-190-196.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20