Experimental investigation of the stability of Bessel beams in the atmosphere
Vasilyev V.S., Kapustin A.I., Skidanov R.V., Podlipnov V.V., Ivliev N.A., Ganchevskaya  S.V.

 

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia;
Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF

Abstract:
We described an experiment on passing Bessel beams through the atmosphere with heat-trolled flows. We showed that at small distances, while passing through the region with a hot air flow, the Bessel beam can be distorted to a complete loss of the structure, but with further propagation over large distances it completely restores its structure. We also described an experiment with the passage of superpositions of vortex beams through the atmosphere with heat flows and aerosols.

Keywords:
Bessel beams, propagation of coherent radiation in the atmosphere, axicon

Citation:
Vasilyev VS, Kapustin AI, Skidanov RV, Podlipnov VV, Ivliev NA, Ganchevskaya SV. Experimental investigation of the stability of Bessel beams in the atmosphere. Computer Optics 2019; 43(3): 376-384. DOI: 10.18287/2412-6179-2019-43-3-376-384.

References:

  1. Xu Y, Zhang Y. Bandwidth-limited orbital angular momentum mode of Bessel Gaussian beams in the moderate to strong non-Kolmogorov turbulence. Opt Commun 2019; 438: 90-95.
  2. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: Review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  3. Boufalah F, Dalil-Essakali L, Ezzariy L, Belafhal A. Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Optical and Quantum Electronics 2018; 50(8): 305.
  4. Lukin IP. Coherence of Bessel-Gaussian beams propagating in a Turbulent atmosphere. Atmospheric and Oceanic Optics 2018; 31(1): 49-59.
  5. Li Y, Zhang Y. OAM mode of the Hankel-Bessel vortex beam in weak to strong turbulent link of marine-atmosphere. Laser Physics 2017; 27(4): 045201.
  6. Saad F, El Halba EM, Belafhal A. A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Optical and Quantum Electronics 2017; 49(3): 94.
  7. Yuan Y, Lei T, Li Z, Li Y, Gao S, Xie Z, Yuan X. Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams. Sci Rep 2017; 7: 42276.
  8. Zhu Y, Chen M, Zhang Y, Li Y. Propagation of the OAM mode carried by partially coherent modified Bessel-Gaussian beams in an aniso-tropic non-Kolmogorov marine atmosphere. J Opt Soc Am A 2016; 33(12): 2277-2283.
  9. Zhang Y, Ma D, Yuan X, Zhou Z. Numerical investigation of flat-topped vortex hollow beams and Bessel beams propagating in a turbulent atmosphere. Appl Opt 2016; 55(32): 9211-9216.
  10. Lukin IP. Spatial scales of coherence of diffraction-free beams in a turbulent atmosphere. Atmospheric and Oceanic Optics 2016; 29(5): 431-440.
  11. Li Y, Zhang Y, Wang D, Shan L, Xia M, Zhao Y. Statistical distribution of the OAM states of Bessel-Gaussian-Schell infrared beams in strong turbulent atmosphere. Infrared Physics and Technology 2016; 76: 569-573.
  12. Lukin IP. Integral momenta of vortex Bessel-Gaussian beams in turbulent atmosphere. Appl Opt 2016; 55(12): B61-B66.
  13. Teen YPA, Suresh P, Nathiyaa T, Rajesh KB, Pillai TVS. Study on intensity distributions of a BG beam with effect of tilt and astigmatism aberration in a turbulent atmosphere. Optik 2015; 126(23): 3830-3837.
  14. Wang X, Yao M, Qiu Z, Yi X, Liu Z. Evolution properties of Bessel-Gaussian Schell-model beams in non-Kolmogorov turbulence. Opt Express 2015; 23(10): 12508-12523.
  15. Aksenov VP, Kolosov VV, Pogutsa CE. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence. Appl Opt 2014; 17: 3607-3614.
  16. Nelson W, Palastro JP, Davis CC, Sprangle P. Propagation of Bessel and Airy beams through atmospheric turbulence. J Opt Soc Am A 2014; 31(3): 603-609.
  17. Zhu K, Li S, Tang Y, Yu Y, Tang H. Study on the propagation parameters of Bessel-Gaussian beams carrying optical vortices through atmospheric turbulence. J Opt Soc Am A 2012; 29(3): 251-257.
  18. Lukin IP. Bessel-Gaussian beam phase fluctuations in randomly inhomogeneous media. Atmospheric and Oceanic Optics 2010; 23(3): 236-240.
  19. Cang J, Zhang Y. Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere. Optik 2010; 121(3): 239-245.
  20. Zhu K, Zhou G, Li X, Zheng X, Tang H. Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere. Opt Express 2008; 16(26): 21315-21320.
  21. Eyyuboǧlu HT, Sermutlu E, Baykal Y, Cai Y, Korotkova O. Intensity fluctuations in J-Bessel-Gaussian beams of all orders propagating in turbulent atmosphere. Appl Phys B 2008; 93(2-3): 605-611.
  22. Chen B, Chen Z, Pu J. Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere. Opt Laser Technol 2008; 40(6): 820-827.
  23. Eyyuboǧlu HT, Hardalaç F. Propagation of modified Bessel-Gaussian beams in turbulence. Opt Laser Technol 2008; 40(2): 343-351.
  24. Noriega-Manez RJ, Gutiérrez-Vega JC. Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere. Opt Express 2007; 15(25): 16328-16341.
  25. Zhu X, Lu L, Cao Z, Zeng B, Xu M. Transmission matrix-based Electric field Monte Carlo study and experimental validation of the propagation characteristics of Bessel beams in turbid media. Opt Lett 2018; 43(19): 4835-4838.
  26. Knyazev BA, Choporova YY, Pavelyev VS, Osintseva ND, Volodkin BO. Transmission of high-power terahertz beams with orbital angular momentum through atmosphere. 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) 2016: 7758816. DOI: 10.1109/IRMMW-THz.2016.7758816.
  27. Chen S, Li S, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Opt Lett 2016; 41(20): 4680-4683.
  28. Arul Teen YP, Nathiyaa T, Rajesh KB, Karthick S. Bessel Gaussian beam propagation through turbulence in free space optical communication. Optical Memory and Neural Networks 2018; 27(2): 81-88.
  29. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58: 1499-1501.
  30. Skidanov RV, Ganchevskaya SV. Diffractive optical elements for the for-mation of combinations of vortex beams in the problem manipulation of microobjects. Computer Optics 2014; 38(1): 65-71.
  31. Tozer TC, Grace D. High-altitude platforms for wireless communications. IEE Electronics & Communication Engineering Journal 2001; 13(3): 127-137.
  32. Al-Habash MA, Andrews LC, Phillips RL. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering 2001; 40(8): 1554-1562.
  33. Strömqvist-Vetelino F, Recolons J, Andrews LC, Young C, Clare B, Corbett K, Grant K. PDF models of the irradiance fluctuations in Gaussian beam waves. Proc SPIE 2006; 6215: 62150A.
  34. Eyyuboğlu HT. Propagation of higher order Bessel–Gaussian beams in turbulence. Appl Phys B 2007; 88(2): 259-265.
  35. Weyrauch T, Vorontsov M. Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications. Appl Opt 2005; 44: 6388-6401.
  36. Tunick A. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path. Opt Express 2008; 16: 14645-14654.
  37. Vorontsov M, Carhart G, Beresnev L, Vorontsov M, Weyrauch T, Riker J, Gudimetla RVS, Roberts LC. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a 3.63 m telescope. Appl Opt 2009; 48: A47-A57.
  38. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  39. Karpeev SV, Paranin VD, Kirilenko MS. Comparison of the stability of LaguerrеGauss vortex beams to random fluctuations of the optical environment [In Russian]. Computer Optics 2017; 41(2): 208-217. DOI: 10.18287/2412-6179-2017-41-2-208-217.
  40. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Optics and Lasers in Engineering 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20