On the use of a multi-raster input of one-dimensional signals in two-dimensional optical correlators
Kuzmin M.S., Davydov V.V., Rogov S.A.

 

Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia;
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, Saint-Petersburg, Russia

 PDF

Abstract:
A mathematical description of a coherent optical correlator for the multi-raster input of long signals is given. It is shown that such an input makes it possible to reduce the value of false correlation maxima that are generally found at the output of a correlator with a single-raster input. It is shown that false maxima do not appear when processing signals with a thumbtack ambiguity function, allowing one to do without a multi-raster input. The results of the theoretical analysis are confirmed by experiments with chirp signals and M-sequence type signals.

Keywords:
correlator, joint transform correlator, JTC, liquid-crystal input device, signal processing

Citation:
Kuzmin MS, Davydov VV, Rogov SA. On the use of a multi-raster input of one-dimensional signals in two-dimensional optical correlators. Computer Optics 2019; 43(3): 391-396. DOI: 10.18287/2412-6179-2019-43-3-391-396.

References:

  1. Radzievsky VG. Directions of development of methodology of substantiation of means of communication and electromagnetic intelligence at engineering-information for radio-electronic war [In Russian]. Radioengineering 2010; 6: 67-73.
  2. Kuzmin MS, Rogov SA. Processing of 1D signals with raster input in 2D optical correlators. Technical Physics 2015; 60(4): 631-633. DOI: 10.1134/S1063784215040179.
  3. Evtikhiev NN, Starikov SN, Zlokazov EYu, Starikov RS. Realisation of invariant holographic filters with the linear phase coefficient in a Van der Lugt correlator. Quantum Electron 2008; 38(2): 191-193. DOI: 10.1070/QE2008v038n02ABEH013638.
  4. Beri VK, Aran A, Munshi S, Gupta AK, Rastogi VK. Enhancing the capabilities of binary phase only filter. Optics & Laser Technology 2010; 42(1): 70-80. DOI: 10.1016/j.optlastec.2009.04.018.
  5. Manzur T, Zeller J, Serati S. Optical correlator based target detection, recognition, classification, and tracking. Appl Opt 2012; 51(21): 4976-4983. DOI: 10.1364/AO.51.004976.
  6. Ikeda K, Watanabe E. High-speed image matching with coaxial holographic optical correlator. Japanese Journal of Applied Physics 2016; 55(9S): 09SC01. DOI: 10.7567/JJAP.55.09SC01.
  7. HOLOEYE. Pioneers in photonic technology. Source: <https://holoeye.com/>.
  8. Casasent D, ed. Optical data processing. Applications. Berlin: Springer; 1978.
  9. Cook CE, Bernfeld M. Radar signals. New York: Academic Press; 1967.
  10. Thomas CE. Optical spectrum analysis of large space bandwidth signals. Appl Opt 1966; 5(11): 1782-1790. DOI: 10.1364/AO.5.001782.
  11. Kuzmin MS, Rogov SA. A folded-spectrum analyzer with a liquid-crystal input device. Technical Physics Letters 2014; 40(8): 629-631.
  12. Tarasov LV, Yezhov VA. Coherent-optical processing of radio signals [In Russian]. Zarubezhnaya radioelektronika 1980; 2: 3-36.
  13. Goodman JW. Introduction to Fourier optics. New York: McGraw-Hill; 1968.
  14. Kuzmin MS, Rogov SA. Optical Fourier processor with a liquid-crystal information-input device. Journal of Optical Technology 2015; 82(3): 147-152. DOI: 10.1364/JOT.82.000147.
  15. Kuzmin MS, Rogov SA. Spatial light modulator based on liquid-crystal video projector matrix for information processing systems. Opt Mem Neural Net 2013; 22(4): 261-266. DOI: 10.3103/S1060992X13040103.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846)332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20