(43-4) 09 * << * >> * Russian * English * Content * All Issues

Fully symmetric diffraction-interference beam shaper for radially polarized light on a 1530-nm wavelength

V.V. Podlipnov1,2, S.V. Karpeev1,2, V.D. Paranin1 

Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 1066 kB

DOI: 10.18287/2412-6179-2019-43-4-577-585

Pages: 577-585.

Full text of article: Russian language.

Abstract:
A completely symmetrical scheme of a shaper of cylindrical vector beams is proposed in which two diffractive axicons and an interference polarizer placed in-between form a sandwich structure of the smallest possible thickness. The design and experimental study of an interference polarizer for generating the radially polarized radiation at a 1530-nm wavelength is carried out. A pair of amplitude diffractive axicons with a period of 3.62 μm to provide the diffraction angle of 24.5° required for generating radial polarization is fabricated. The transformation of a circularly polarized beam into a radially polarized vortex beam is experimentally demonstrated.

Keywords:
multilayer optical coating, interference polarizer, diffraction axicon, sandwich structure, radial polarization

Citation:
Podlipnov VV, Karpeev SV, Paranin VD. Fully symmetric diffraction-interference beam shaper for radially polarized light on a 1530-nm wavelength. Computer Optics 2019; 43(4): 577-585. DOI: 10.18287/2412-6179-2019-43-4-577-585.

References:

  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics 2009; 1: 1-57.
  2. Millione G, Nguyen ThA, Leach J, Nolan DA, Alfano RR. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett 2015; 40(21): 4887-4890.
  3. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Optics and Lasers in Engineering 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  4. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  5. Tovar AA. Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams. J Opt Soc Am A 1998; 15(10): 2705-2711.
  6. Kozawa Y, Sato S. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett 2005; 30: 3063-3065.
  7. Skidanov RV, Morozov AA. Diffractive optical elements for forming radially polarized light, based on the use stack of Stoletov. Computer Optics 2014; 38(4): 614-618.
  8. Karpeev S, Paranin V, Khonina S. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19(5): 055701. DOI: 10.1088/2040-8986/aa640c.
  9. Karpeev SV, Paranin VD, Khonina SN. Generation of nonuniformly polarised vortex Bessel beams by an interference polariser. Quantum Electron 2018; 48(6): 521-526. DOI: 10.1070/QEL16603.
  10. Man Zh, Min Ch, Zhang Y, Shen Z, Yuan X-C. Arbitrary vector beams with selective polarization states patterned by tailored polarizing films. Laser Phys 2013; 23(10): 105001. DOI: 10.1088/1054-660X/23/10/105001.
  11. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.
  12. Karpeev SV. Generation of radially polarized zero-order Bessel beams by diffractive and polarization optics. Computer Optics 2016; 40(4): 583-587. DOI: 10.18287/2412-6179-2016-40-4-583-587.
  13. Paranin VD, Karpeev SV, Khonina SN. Generation of radially polarized beams based on the refractive optical elements with in-terference polarizing coatings. Computer Optics 2015; 39(4): 492-9. DOI: 10.18287/0134-2452-2015-39-4-492-499.
  14. Karpeev SV, Alferov SV, Khonina SN, Kudryashov SI. Study of the broadband radiation intensity distribution formed by dif-fractive optical elements. Computer Optics 2014; 38(4): 689-694.



© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20