(43-4) 18 * << * >> * Russian * English * Content * All Issues

Optimization of the multidimensional signal interpolator in a lower dimensional space

M.V. Gashnikov1,2

Samara National Research University,
Moskovskoye Shosse 34, 443086, Samara, Russia,

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 1266 kB

DOI: 10.18287/2412-6179-2019-43-4-653-660

Pages: 653-660.

Full text of article: Russian language.

Abstract:
Adaptive multidimensional signal interpolators are developed. These interpolators take into account the presence and direction of boundaries of flat signal regions in each local neighborhood based on the automatic selection of the interpolating function for each signal sample. The selection of the interpolating function is performed by a parameterized rule, which is optimized in a parametric lower dimensional space. The dimension reduction is performed using rank filtering of local differences in the neighborhood of each signal sample. The interpolating functions of adaptive interpolators are written for the multidimensional, three-dimensional and two-dimensional cases. The use of adaptive interpolators in the problem of compression of multidimensional signals is also considered. Results of an experimental study of adaptive interpolators for real multidimensional signals of various types are presented.

Keywords:
optimization, interpolation, multidimensional signal, dimension reduction, compression

Citation:
Gashnikov MV. Optimization of the multidimensional signal interpolator in a lower dimensional space. Computer Optics 2019; 43(4): 653-660. DOI: 10.18287/2412-6179-2019-43-4-653-660.

References:

  1. Woods J. Multidimensional signal, image, and video processing and coding. 2nd ed. Academic Press; 2011.
  2. Tekalp AM. Digital video processing. 2nd ed. Prentice Hall; 2015. ISBN: 978-0-13-399100-0.
  3. Chang Ch-I. Hyperspectral data processing: Algorithm design and analysis. Hoboken, NJ: A John Wiley & Sons, Inc; 2013. ISBN: 978-0-471-69056-6.
  4. Grahn H, John PG. Techniques and applications of hyperspectral image analysis, Wiley & Sons; 2007. ISBN: 978-0-470-01087-7.
  5. Lillesand T, Kiefer RW, Chipman J. Remote sensing and image interpretation. 7th ed. John Wiley & Sons; 2015.
  6. Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 2016: 38(2): 295-307. DOI: 10.1109/TPAMI.2015.2439281.
  7. Hu H, Holman PM, Haan G. Image interpolation using classification-based neural networks. IEEE International Symposium on Consumer Electronics 2004: 133-137. DOI: 10.1109/ISCE.2004
  8. Eldar YC, Kutyniok G. Compressed sensing: Theory and applications and signal processing. Cambridge University Press; 2012. ISBN: 978-1-107-00558-7.
  9. Vapnik V. Statistical learning theory. John Wiley & Sons; 1998.
  10. Hakimov BV. Spline modelling of correlation relations in geological and ecological examples [In Russian]. Saint-Petersburg: "Neva" Publisher; 2003.
  11. Cohen A, Davenport MA, Leviatan D. On the stability and accuracy of least squares approximations. J Comput Math 2013; 13: 819-834.
  12. Ballani J, Kressner D, Peters M. Multilevel tensor approximation of PDEs with random data. 2016. Source: <https://arxiv.org/abs/1606.05505>.
  13. Caiafa CF, Cichocki A. Computing sparse representations of multidimensional signals using kronecker bases. Neural Computation 2016; 25(1): 186-220.
  14. Vasin YG. Well adapted bases and experimental data processing problems. Tutorial [In Russian]. Gorky: Gorky State University Publisher; 1979.
  15. Soifer VA, ed. Computer image processing, Part II: Methods and algorithms [in Russian]. Moscow: "Fizmatlit" Publisher; 2003. ISBN: 5-9221-0270-2.
  16. Gashnikov MV. A differential image compression method using adaptive parameterized extrapolation. Optical Memory and Neural Networks (Information Optics) 2017; 26(2): 137-144. DOI: 10.3103/S1060992X17020023.
  17. Maksimov AI, Gashnikov MV. Adaptive interpolation of multidimensional signals for differential compression. Computer Optics 2018; 42(4): 679-687. DOI: 10.18287/2412-6179-2018-42-4-679-687.
  18. Sayood K. Introduction to data compression. 4th ed. Waltham, MA: Morgan Kaufmann; 2012. ISBN: 978-0-12-415796-5.
  19. Salomon D. Data compression. The complete reference. 4th ed. Springer-Verlag; 2007.
  20. Gashnikov M, Glumov N, Sergeyev V. Compression method for real-time systems of remote sensing. ICPR 2000; 3: 232-235. DOI: 10.1109/ICPR.2000.903527.
  21. Gashnikov MV, Glumov NI. Onboard processing of hyperspectral data in the remote sensing systems based on hierarchical compression. Computer Optics 2016; 40(4): 543-551. DOI: 10.18287/2412-6179-2016-40-4-543-551.
  22. Gonzalez RC, Woods RE. Digital image processing. 3th ed. Upper Saddle River, NJ: Prentice Hall; 2007. ISBN: 978-0-13-168728-8.
  23. AVIRIS data – Ordering free AVIRIS standard data products. Jet Propulsion Laboratory. Source: <http://aviris.jpl.nasa.gov/data/free_data.html>.
  24. TokyoTech 31-band hyperspectral image dataset. Source: <http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata31.html>.



© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20