(43-5) 11 * << * >> * Russian * English * Content * All Issues

Imaging systems based on generalized lenses

V.S. Vasilev1, R.V. Skidanov1,2, S.V. Ganchevskaya1,2

Samara National Research University, 443086, Russia, Samara, Moskovskoye Shosse 34,  
IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,  
Molodogvardeyskaya 151, 443001, Samara, Russia

 PDF, 1791 kB

DOI: 10.18287/2412-6179-2019-43-5-789-795

Pages: 789-795.

Full text of article: Russian language.

Abstract:
We consider the possibility of using generalized lenses in imaging optical systems. We propose using two generalized lenses in a system similar to a Fourier-correlator to obtain a point-to-point mapping, where the second lens is set so that a plane wave is also formed at the output of the system when the incident wave is plane. We show that for generalized lenses with a small deviation of their degree from 2, such a system forms a fairly high-quality image. We use a standard radial photographic chart to test the system, which allows us to determine its key optical characteristics.

Keywords:
generalized lens, radial photographic chart, imaging optical system, Fresnel transform, Fourier-correlator.

Citation:
Vasilyev VS, Skidanov RV, Ganchevskaya SV. Imaging systems based on generalized lenses. Computer Optics 2019; 43(5): 789-795. DOI: 10.18287/2412-6179-2019-43-5-789-795.

Acknowledgements:
The work was partly funded by the Ministry of Education and Science of the Russian Federation under the government project # 3.3025.2017/4.6, 007-ГЗ/Ч3363/26.

References:

  1. Malacara D, Malacara Z. Handbook of optical design New York, Basel: Marcelu Ekkerin Inc; 2004.
  2. Khonina SN, Volotovsky SG. Fracxicon – diffractive optical element with conical focal domain. Computer Optics 2009; 33(4): 401-411.
  3. Khonina SN, Kazanskiǐ NL, Ustinov AV, Volotovskiǐ SG. The lensacon: nonparaxial effects. J Opt Technol 2011; 78(11): 724-729. DOI: 10.1364/JOT.78.000724.
  4. Ustinov AV, Konina SN. Generalized lens: calculation of distribution on the optical axis. Computer Optics 2013; 37(3): 307-315.
  5. Greisukh GI, Ezhov EG, Stepanov SA. Comparative analysis of the chromatic aberrations of the diffractive and refractive lenses. Computer Optics 2005; 28: 60-66.
  6. Kazanskii NL, Khonina SN, Skidanov RV, Morozov AA, Kharitonov SI, Volotovskiy SG. Formation of images using multilevel diffractive lens. Computer Optics 2014; 38(3): 425-434.
  7. Sweeney DW, Sommargren GE. Harmonic diffractive lenses. Appl Opt 1995; 34(14): 2469-2475.
  8. Khonina SN, Ustinov AV, Skidanov RV, Morozov AA. Comparative study of the spectral characteristics of aspheric lenses. Computer Optics 2015; 39(3): 363-369. DOI: 10.18287/0134-2452-2015-39-3-363-369.
  9. Karpeev SV, Alferov SV, Khonina SN, Kudryashov SI. Study of the broadband radiation intensity distribution formed by diffractive optical elements. Computer Optics 2015; 38(4): 689-694.
  10. Greisukh GI, Stepanov SA, Antonov AI. Comparative analysis of the fresnel lens and the kinoform lens. Computer Optics 2018; 42(3): 369-376.
  11. Antonov AI, Greisukh GI, Ezhov EG, Stepanov SA. Diffractive elements for an imaging optical systems. Avtometriya 2017; 53(5): 4-16.
  12. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Layout and calculation of a refractive-diffraction objective of a periscope type for a mobile communication device. J Opt Techn 2016; 83(11): 687-691.
  13. Greĭsukh GI, Ezhov EG, Stepanov SA. Taking diffractive efficiency into account in the design of refractive/diffrac-tive optical systems. J Opt Technol 2016; 83(3): 163-167.
  14. Greisukh GI, Danilov VA, Ezhov EG, Stepanov SA, Usievich BA. Spectral and angular dependences of the ef-ficiency of the relief-phase diffraction lenses with two- and three-layer microstructures. Opt Spectrosc 2015; 118(6): 964-970.
  15. Greisukh GI, Ezhov EG, Kazin SV, Stepanov SA. Modeling and investigation of color correction in optical systems with constituent elements synthesized by precision molding. Computer Optics 2015; 39(4): 529-535.
  16. Bobrov ST, Greisukh GI, Turkevich YuG. Optics of diffraction elements and systems [In Russian]. Leningrad: “Mashinostroenie” Publisher, 1986. – 223 p.

 


© 2009, IPSI RAS
Россия, 443001, Самара, ул. Молодогвардейская, 151; электронная почта: ko@smr.ru ; тел: +7 (846) 242-41-24 (ответственный секретарь), +7 (846) 332-56-22 (технический редактор), факс: +7 (846) 332-56-20