(43-6) 02 * << * >> * Russian * English * Content * All Issues

Coherence of vortex pseudo-Bessel beams in turbulent atmosphere

I.P. Lukin1

Zuev Institute of Atmospheric Optics SB RAS,
sq. Academician Zuev 1, 634055, Tomsk, Russia

 PDF, 1306 kB

DOI: 10.18287/2412-6179-2019-43-6-926-935

Pages: 926-935.

Full text of article: Russian language.

Abstract:
Theoretical research of coherent properties of vortex conic waves propagating in a turbulent atmosphere was developed. The analysis was based on the analytical solution of the equation for the transverse second-order mutual coherence function of a light field. The following characteristics of coherence of vortex conic waves were considered: the coherence degree, the coherence radius, the root-mean-square and the integral scale of coherence degree. Dependence of these characteristics on the parameters of optical radiation and turbulent atmosphere was analyzed. Unlike the coherence radius, the root-mean-square and integral scales of the coherence degree of vortex conic waves were found to be highly sensitive to the influence of atmospheric turbulence.

Keywords:
conic wave, topological charge, optical radiation, atmospheric turbulence, coherence, coherence radius.

Citation:
Lukin IP. Coherence of vortex pseudo-Bessel beams in turbulent atmosphere. Computer Optics 2019; 43(6): 926-935. DOI: 10.18287/2412-6179-2019-43-6-926-935.

Acknowledgements:
The work was funded under a basic research project of the Russian Academy of Sciences, No. АААА-А17-117021310149-4.

References:

  1. McLeod JH. The axicon: A new type of optical element. J Opt Soc Am 1954; 44(8): 592-597.
  2. Friberg AT. Stationary-phase analysis of generalized axicons. J Opt Soc Am A 1996; 13(4) 743-750.
  3. Popov SYu, Friberg AT. Design of diffractive axicons for partially coherent light. Opt Lett 1998; 23(21): 1639-1641.
  4. Akturk S, Zhou B, Pasquiou B, Franco M, Mysyrowicz A. Intensity distribution around the focal regions of real axicons. Opt Commun 2008; 281(17): 4240-4244. DOI: 10.1016/j.optcom.2008.05.027.
  5. Fedotowsky A, Lehovec K. Optimal filter design for annular imaging. Appl Opt 1974; 13(12): 2919-2923.
  6. Khonina SN, Kotlyar VV, Skidanov RV, Soifer VA, Jefimovs K, Simonen J, Tutunen J. Rotation of microparticles with Bessel beams generated by diffractive elements. J Mod Opt 2004; 51(14): 2167-2184. DOI: 10.1080/09500340408232521.
  7. Khonina SN, Kotlyar VV, Shinkaryev MV, Soifer VA, Uspleniev GV. The phase rotor filter. J Mod Opt 1992; 39(5): 1147-1154. DOI: 10.1080/09500349214551151.
  8. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
  9. Kotlyar VV, Kovalev AA, Khonina SN, Skidanov RV, Soifer VA, Elfstrom H, Tossavainen N, Turunen J. Diffraction of conic and Gaussian beams by a spiral phase plate. Appl Opt 2006; 45(12): 2656-2665. DOI: 10.1364/AO.45.002656.
  10. Birch P, Ituen I, Young R, Chatwin Ch. Long-distance Bessel beam propagation through Kolmogorov turbulence. J Opt Soc Am A 2015; 32(11): 2066-2073. DOI: 10.1364/JOSAA.32.002066.
  11. Cheng M, Guo L, Li J, Huang Q. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence. J Opt Soc Am A 2016; 33(8): 1442-1450. DOI: 10.1364/JOSAA.33.001442.
  12. Chen Sh, Li Sh, Zhao Y, Liu J, Zhu L, Wang A, Du J, Shen L, Wang J. Demonstration of 20-Gbit/s high-speed Bessel beam encoding/decoding link with adaptive turbulence compensation. Opt Lett 2016; 41(20): 4680-4683. DOI: 10.1364/OL.41.004680.
  13. Doster T, Watnik AT. Laguerre-Gauss and Bessel-Gauss beams propagation through turbulence: analysis of channel efficiency. Appl Opt 2016; 55(36): 10239-10246. DOI: 10.1364/AO.55.010239.
  14. Soifer VA, Korotkova О, Khonina SN, Shchepakina ЕА. Vortex beams in turbulent media: review. Computer Optics 2016; 40(5): 605-624. DOI: 10.18287/2412-6179-2016-40-5-605-624.
  15. Gbur G, Tyson RK. Vortex beam propagation through atmospheric turbulence and topological charge conservation. J Opt Soc Am A 2008; 25(1): 225-230.
  16. Fu Sh, Wang T, Zhang Zh, Zhai Y, Gao Ch. Pre-correction of distorted Bessel-Gauss beams without wavefront detection. Appl Phys B 2017; 123(12): 275. DOI: 10.1007/s00340-017-6853-1.
  17. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15. DOI: 10.1364/AO.56.0000E8.
  18. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre-Gaussian beams transmitted through an aqueous suspension of microparticles. Optics and Lasers in Engineering 2018; 105: 68-74. DOI: 10.1016/j.optlaseng.2018.01.006.
  19. Rytov SM, Kravtsov YuA, Tatarskii VI. Principles of statistical radiophysics. V. 4. Wave propagation through random media. Berlin: Springer; 1989.
  20. Belen’kii MS, Lukin VP, Mironov VL, Pokasov VV. Coherence of laser radiation in the atmosphere [In Russian]. Novosibirsk: “Nauka” Publisher; 1985.
  21. Lukin IP. Coherence of a Bessel beam in a turbulent atmosphere. Atmos Ocean Opt 2012; 25(5): 328-337. DOI: 10.1134/S1024856012050053.
  22. Lukin IP. Formation of a ring dislocation of a coherence of a vortex optical beam in turbulent atmosphere. Proc SPIE 2013; 9066: 90660Q. DOI: 10.1117/12.2049508.
  23. Mandel L. Fluctuations of photon beams: The distribution of the photo-electrons. Proc Phys Soc 1959; 74(3): 233-243.
  24. Mandel L, Wolf E. The measures of bandwidth and coherence time in optics. Proc Phys Soc 1962; 80(4): 894-897.
  25. Tatarskii VI. The effects of the turbulent atmosphere on wave propagation. Springfield, Virginia: National Technical Informational Service; 1971.
  26. Fedoryuk MV. Method of saddle-point [In Russian]. Moscow: “Nauka” Publisher; 1977.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20