(43-6) 03 * << * >> * Russian * English * Content * All Issues

A microscope image processing method for analyzing TLIPSS structures

D.A. Belousov1, A.V. Dostovalov1,2, V.P. Korolkov1, S.L. Mikerin1

Institute of Automation and Electrometry of the SB RAS,
630090, Novosibirsk, Russia, Acad. Koptyug Ave 1,
Novosibirsk State University,
630090, Novosibirsk, Russia, Pirogova St. 2

 PDF, 1595 kB

DOI: 10.18287/2412-6179-2019-43-6-936-945

Pages: 936-945.

Full text of article: Russian language.

Abstract:
The paper describes a method for processing microimages of thermochemical laser-induced periodic surface structures (TLIPSS) to quantify their structural order and defects. Results of its application for the analysis of microimages of periodic structures formed in 30-nm chromium films by an astigmatically focused femtosecond Gaussian laser beam have been presented. Dependences of the relative area of the beam-modified region, the area of defects, and the ordering of the periodic structures on the scanning speed and the writing beam power have been obtained.

Keywords:
digital image processing, microscope image processing, laser materials processing, laser-induced periodic surface structures.

Citation:
Belousov DA, Dostovalov AV, Korolkov VP, Mikerin SL. A microscope image processing method for analyzing TLIPSS structures. Computer Optics 2019; 43(6): 936-945. DOI: 10.18287/2412-6179-2019-43-6-936-945.

Acknowledgements:
In the research, we used the equipment of the multiple-access Center «Spectroscopy and Optics» at IA&E SB RAS. This work was supported by the Ministry of Education and Science of the Russian Federation under grant АААА-А17-117052210002-7 (Processing of microimages) and grant АААА-А17-117062110026-3 (TLIPSS formation).

References:

  1. Camacho-López S, Evans R, Escobar-Alarcón L, Camacho-López MA, Camacho-López MA. Polarization-dependent single-beam laser-induced grating-like effects on titanium films. Appl Surf Sci 2008; 255(5): 3028-3032. DOI:10.1016/j.apsusc.2008.08.085.
  2. Öktem B, Pavlov I, Ilday S, Kalaycıoğlu H, Rybak A, Yavaş S, Erdoğan M, Ilday FÖ. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat Photon 2013; 7(11): 897-901. DOI: 10.1038/nphoton.2013.272.
  3. Dostovalov AV, Korolkov VP, Babin SA. Formation of thermochemical laser-induced periodic surface structures on Ti films by a femtosecond IR Gaussian beam: regimes, limiting factors, and optical properties. Appl Phys B 2017; 123(1): 30. DOI: 10.1007/s00340-016-6600-z.
  4. Dostovalov AV, Korolkov VP, Terentyev VS, Okotrub KA, Dultsev FN, Babin SA. Study of the formation of thermochemical laser-induced periodic surface structures on Cr, Ti, Ni and NiCr films under femtosecond irradiation. Quant Electron 2017; 47(7): 631-637. DOI: 10.1070/QEL16379.
  5. Gnilitskyi I, Derrien TJ-Y, Levy Y, Bulgakova NM, Mocek T, Orazi L. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep 2017; 7: 8485. DOI: 10.1038/s41598-017-08788-z.
  6. Dostovalov AV, Korolkov VP, Okotrub KA, Bronnikov KA, Babin SA. Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Opt Express 2018; 26(6): 7712-7723. DOI: 10.1364/OE.26.007712.
  7. Bonse J, Höhm S, Kirner SV, Rosenfeld A, Krüger J. Laser-induced periodic surface structures – a scientific evergreen. IEEE Journal of Selected Topics in Quantum Electronics 2017; 23(3): 109-123. DOI: 10.1109/JSTQE.2016.2614183.
  8. Müller FA, Kunz C, Gräf S. Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 2016; 9(6): 1-29. DOI: 10.3390/ma9060476.
  9. Bonse J, Kirner SV, Höhm S, Epperlein N, Spaltmann D, Rosenfeld A, Krüger J. Applications of laser-induced periodic surface structures (LIPSS). Proc SPIE 2017; 10092: 100920N. DOI: 10.1117/12.2250919.
  10. Dostovalov AV, Terentyev VS, Bronnikov KA, Belousov DA, Korolkov VP. Influence of scanning speed on TLIPSS formation with axially symmetric and elliptical Gaussian fs laser beam [In Russian]. Appl Photon 2018; 5(3): 157-172. DOI: 10.15593/2411-4367/2018.3.01.
  11. Rezakhaniha R, Agianniotis A, Schrauwen JTC, Griffa A, Sage D, Bouten CVC, van de Vosse FN, Unser M, Stergiopulos N. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 2012; 11(3-4): 461-473. DOI: 10.1007/s10237-011-0325-z.
  12. Piispoki Z, Storath M, Sage D, Unser M. Transforms and operators for directional bioimage analysis: A survey. In Book: De Vos WH, Munck S, Timmermans J-P, eds. Focus on bio-image informatics. Switzerland: Springer International Publishing; 2016: 69-93. DOI: 10.1007/978-3-319-28549-8_3.
  13. OrientationJ. Source: <http://bigwww.epfl.ch/demo/orientation/>.
  14. Schindelin I, Rueden СТ, Hiner MC, Eliceiri KW. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev 2015; 82(7-8): 518-529. DOI: 10.1002/mrd.22489.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20