(43-6) 05 * << * >> * Russian * English * Content * All Issues

Color models of interference images of thin stratified objects in optical microscopy

A.A. Dyachenko1,2, V.P. Ryabukho1,2

Saratov State University, Saratov, Russia,
Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia

 PDF, 1110 kB

DOI: 10.18287/2412-6179-2019-43-6-956-967

Pages: 956-967.

Full text of article: Russian language.

Abstract:
Algorithms for the analysis of polychromatic interference patterns in images of thin stratified objects in optical microscopy are considered. The algorithms allow one to measure the thin-film optical thickness. A measurement method based on the comparison of colors of the interference image under study and  a numerically simulated image is discussed. We discuss a mathematical model for the calculation and numerical simulation of interference patterns and algorithms for interference pattern processing. Color comparison in an RGB color model is described and limitations of such a method are shown. The feasibility of using a Lab color model is shown and algorithms of interference color comparison in this model are presented. Results of application of the presented algorithms to measuring the optical thickness of red blood cells in a blood smear are discussed. The estimation of the error and robustness of the proposed algorithms is conducted.

Keywords:
interference colors, thin films, optical microscopy, interference microscopy, colorimetry, color comparison, color model.

Citation:
Dyachenko AA, Ryabukho VP. Color models of interference images of thin stratified objects in optical microscopy. Computer Optics 2019; 43(6): 956-967. DOI: 10.18287/2412-6179-2019-43-6-956-967.

References:

  1. Setter A, Damjanovic D. Ferroelectric thin films: Review of materials, properties, and applications. J Appl Phys 2006; 100: 051606.
  2. Charitidis CA. Nanomechanical and nanotribological properties of carbon-based thin films: A review. International Journal of Refractory Metals and Hard Materials 2010; 28(1): 51-70.
  3. Maissel LI, Glang R, eds. Handbook of thin film technology. New York: McGraw-Hill; 1970.
  4. Tambasov IA, Voronin AS, Evsevskaya NP, et al. Structural and thermoelectric properties of optically transparent thin films based on single-walled carbon nanotubes. Physics of the Solid State 2018; 60(12): 2456-2462.
  5. Kreder MJ, Daniel D, Tetreault A, et al. Film dynamics and lubricant depletion by droplets moving on lubricated surfaces. Physical Review X 2018; 8(3): 031053.
  6. Křupka I, Hartl M. The effect of surface texturing on thin EHD lubrication film. Tribology International 2007; 40(7): 1100-1110.
  7. Birnie D. Optical video interpretation of interference colors from thin transparent films on silicon. Mater Lett 2004; 58: 2795-2800.
  8. Parthasarathy S, Wolfe D, et al. A color vision system for film thickness determination. Proc IEEE Conf Robotics and Automation 1987; 515-519.
  9. Voevoda MI, Pel'tek SE, Kruchinina MV, et al. Studying thin films obtained through centrifugation of the human blood serum by methods of spectral ellipsometry and infrared spectroscopy. Optoelectronics, Instrumentation and Data Processing 2010; 46(4): 382-393.
  10. Tarasevich YY, Isakova OP, Kondukhov VV, Savitskaya AV. Effect of evaporation conditions on the spatial redistribution of components in an avaporating liquid drop on a horizontal solid substrate. Technical Physics. The Russian Journal of Applied Physics 2010; 80(5): 45-53.
  11. Tarasevich YY, Vodolazskaya IV, Bondarenko OP. Modeling of spatial-temporal distribution of the components in the drying sessile droplet of biological fluid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013; 432(5): 99-103.
  12. Lychagov VV, Kal'yanov AL, Ryabukho VP. Low-coherence interference microscopy of the internal structure of crystallized blood plasma. Optics and Spectroscopy 2009; 107(6): 859-865.
  13. Sheppard CJR, Roy M. Low-coherence interference microscopy. In Book: Török P, Kao F-J, eds. Optical imaging and microscopy. Berlin, Heidelberg: Springer-Verlag; 2003: 257-273.
  14. Dubois A, ed. Handbook of full-field optical coherence microscopy: Technology and applications. Singapore: Pan Stanford Publishing Pte Ltd; 2016.
  15. Abdulhalim, I. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography Annalen der Physik 2012; 524(12): 787-804. DOI: 10.1002/andp.201200106.
  16. Lychagov, VV, Ryabukho VP, Kalyanov AL, Smirnov IV. Polychromatic low-coherence interferometry of stratified structures with digital interferogram recording and processing. J Opt 2012; 14(1): 015702.
  17. Lychagov, VV, Ryabukho VP, Kalyanov AL, Smirnov IV. Low-coherence interferometry of stratified structures using polychromatic light and digital interferogram recording and processing [In Russian]. Computer Optics 2010; 34(4): 511-524.
  18. Wilson T, ed. Confocal microscopy. San Diego: Academic Press; 1990.
  19. Pawley JE, ed. Handbook of biological confocal microscopy. 3rd ed. Berlin: Springer; 2006.
  20. Sheppard CJR, Connolly TJ, Lee J, Cogswell CJ. Confocal imaging of a stratified medium. Appl Opt 1994; 33(4): 631-640.
  21. De Groot P. Principles of interference microscopy for the measurement of surface topography. Adv Opt Photon 2015; 7(1): 1-65.
  22. Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl Opt 2008; 47: A52-A61.
  23. Schanars U, Falldorf C, Watson J, Jueptner W. Digital holography and wavefront sensing principles: Techniques and applications. 2nd ed. Heidelberg, New York, Dordrecht, London: Springer; 2015. ISBN: 978-3-662-44692-8.
  24. Kim MK. Digital holographic microscopy. New York: Springer-Verlag; 2011: 1-10.
  25. Dubois A, Vabre L, Boccara AC, Beaurepaire E. High-resolution full-field optical coherence tomography with a Linnik microscope. Appl Opt 2002; 41(4): 805-812.
  26. Drexler W, Fujimoto JG, eds. Optical coherence tomography: technology and applications. Springer Science & Business Media; 2008.
  27. Leitgeb RA. En face optical coherence tomography: a technology review. Biomed Opt Express 2019; 10(5): 2177-2201.
  28. Kalenkov GS, Kalenkov SG, Shtan'ko AE. Hyperspectral holographic Fourier-microscopy. Quantum Electronics 2015; 45(4): 333-338.
  29. Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 2002. ISBN: 978-0-521-64222-4.
  30. Hartl M, Krupka I, Poliscuk R, et al. Thin film colorimetric interferometry. Tribology Transactions 2001; 44(2): 270-276.
  31. Kitagawa K. Thin-film thickness profile measurement by three-wavelength interference color analysis. Appl Opt 2013; 52(10): 1998-2007.
  32. Kitagawa K. Surface and thickness profile measurement of a transparent film by three-wavelength vertical scanning interferometry. Opt Lett 2014; 39(14): 4172-4175.
  33. Frostad JM, Tammaro D, Santollani L, de Araujo SB, Fuller GG. Dynamic fluid-film interferometry as a predictor of bulk foam properties. Soft Matter 2016; 12(46): 9266-9279.
  34. Jin G, Jansson R, Arwin H. Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates. Rev Sci Instrum 1996; 67: 2930-2936.
  35. Kim J, Kim K, Pahk HJ. Thickness measurement of a transparent thin film using phase change in white-light phase-shift interferometry. Current Optics and Photonics 2017; 1(5): 505-513.
  36. Dyachenko AA, Ryabukho VP. Measurement of the optical thickness of a layered object from interference colors in white-light microscopy. Computer Optics 2017; 41(5): 670-679. DOI: 10.18287/2412-6179-2017-41-5-670-679.
  37. Dyachenko AA, Maksimova LA, Ryabukho VP. Manifestation of effects of the angular spectrum of the illuminating field in polychromatic interference microscopy of stratified objects. Computer Optics 2018; 42(6): 959-969. DOI: 10.18287/2412-6179-2018-42-6-959-969.
  38. Gonzalez R, Woods R. Digital image processing. 3rd ed. Pearson Prentice Hall; 2008.
  39. Pratt WK. Digital image processing. 4th ed. John Wiley & Sons; 2007.
  40. McDonald R. Colour physics for industry. Bradford; 1997.
  41. Forsyth DA, Ponce J. Computer vision: A modern approach. Prentice Hall; 2004.
  42. Zimin DI, Fursov VA. The technology for determining the recovery filter and color image processing [In Russian]. Computer Optics 2005; 27: 170-173.
  43. Ageeva AI, Krestinina NS, Hodov SI. The comparative test of CMYK and RGB models in the channel separated output of fullcolor images [In Russian]. Izvestiya Tula State University 2011; 6(2): 386-391.
  44. Kruschwitz JDT. Field guide to colorimetry and fundamental color modeling. Bellingham, Washington, USA: SPIE Press; 2018.
  45. Kraiskii AV, Mironova TV, Sultanov TT. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method. Quantum Electronics 2010; 40(7): 652-658.
  46. Palchikova IG, Smirnov ES. Interval estimation of color parameters from digital images. Computer Optics 2017; 41(1): 95-102. DOI: 10.18287/2412-6179-2017-41-1-95-102.
  47. Kraiskii AV, Mironova TV, Sultanov TT. Narrow-band radiation wavelength measurement by processing digital photographs in RAW format. Quant Electron 2012; 42(12): 1137-1139.
  48. Kim MG, Pahk HJ. Fast and reliable measurement of thin film thickness profile based on wavelet transform in spectrally resolved white-light interferometry. International Journal of Precision Engineering and Manufacturing 2018; 19(2): 213-219.
  49. Abdulhalim I. Spectroscopic interference microscopy technique for measurement of layer parameters. Meas Sci Technol 2001; 12: 1996-2001.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20