(43-6) 08 * << * >> * Russian * English * Content * All Issues

Optics-to-THz conversion of vortex beams using nonlinear difference frequency generation

V.Kh. Bagmanov1, A.Kh. Sultanov1, A.R. Gizatulin1, I.K. Meshkov1, I.A. Kuk1, E.P. Grakhova1, G.I. Abdrakhmanova1, I.L. Vinogradova1

Ufa State Aviation Technical University, Ufa, Russia

 PDF, 1000 kB

DOI: 10.18287/2412-6179-2019-43-6-983-991

Pages: 983-991.

Full text of article: Russian language.

Abstract:
In this paper, using a modified model of slowly varying amplitudes, a process of optics-to-THZ-conversion of vortex beams based on the nonlinear difference frequency generation in a medium with second-order susceptibility is considered. A theoretical substantiation of the law of topological charge conversion of vortex beams is given – the topological charge of the output THz vortex beam is equal to the difference of the topological charges of the input optical vortex beams. A simulation model of the processes under consideration is implemented.

Keywords:
differential frequency generation, nonlinear medium, vortex beams conversion.

Citation:
Bagmanov VKh, Sultanov AKh, Gizatulin AR, Meshkov IK, Kuk IA, Grakhova EP, Abdrakhmanova GI, Vinogradova IL. Optics-to-THz-conversion of vortex beams using nonlinear difference frequency generation. Computer Optics 2019; 43(6): 983-991. DOI: 10.18287/2412-6179-2019-43-6-983-991.

Acknowledgements:
The work was funded by the Russian Science Foundation under grant No. 18-19-00123.

References:

  1. Ng'oma A. Radio-over-fiber techniques for millimeter wave wireless applications. International Topical Meeting on Microwave Photonics (MWP) 2015: 1-4.
  2. Ruan Z, Veronis G, Vodopyanov K, Fejer M, Fan S. Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides. Opt Express 2009; 17: 13502-13515.
  3. Petrov EV, Manyizov BI, Bushuev VA. Generation of terahertz difference frequency signals in a system of two-periodic one-dimensional photonic crystals [In Russian]. Quantum Electronics 2007; 37(4): 358-362.
  4. Murata Н, Okamura Y. Detection of an optical signal using difference frequency generation in a periodically poled LiTaO3 microwave waveguide. Advances in OptoElectronics 2008; 587091.
  5. Qasymeh M. Terahertz generation in nonlinear plasmonic waveguides. IEEE J Quant Electron 2016; 52(4): 1-7.
  6. De Regis M, Consolino L, Bartalini S, De Natale P. Waveguided approach for difference frequency generation of broadly-tunable continuous-wave terahertz radiation. Appl Sci 2018; 8(12): 2374.
  7. Courtial J, Dholakia K, Allen L, Padgett M. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys Rev A 1997; 56(5): 4193.
  8. Shao G-H, Wu Z-J, Chen J-H, Xu F, Lu Y-Q. Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching. Phys Rev A 2013; 88: 063827.
  9. Ni R, Niu YF, Du L, Hu XP, Zhang Y, Zhu SN. Topological charge transfer in frequency doubling of fractional orbital angular momentum state. Appl Phys Lett 2016; 109: 151103.
  10. Zhou Z-Y, Ding D-Sh, Jiang Y-K, Li Y, Shi Sh, Wang X-Sh, Shi B-S, Guo G-C. Orbital Angular Momentum Light Frequency Conversion And Interference With Quasi-Phase Matching Crystals. Optics Express 2014; 22(17): 20298-20310. DOI: 10.1364/OE.22.020298.
  11. Li Y, Zhou Z-Y, Ding D-Sh, Shi B-S. Sum frequency generation with two orbital angular momentum carrying laser beams. J Opt Soc Am B 2015; 32(3): 407-411.
  12. Fang X, Wei D, Yang G, Wei D, Ni R, Zhang Y, Hu HP, Zhu SN, Xiao M. Nonlinear optical conversion of the orbital angular momentum of light in a PPLT crystal. Asia Communications and Photonics Conference 2016: AS1J.4.
  13. Fang X, Yang H, Zhang Y, Xiao M. Optical parametric amplification of a Laguerre–Gaussian mode. OSA Continuum 2019; 2(2): 236-243.
  14. Yariv A, Yeh P. Optical waves in crystals. New York: Wiley; 1984.
  15. Boyd RW. Nonlinear optics. Academic Press as an imprint of Elsevier; 2008.
  16. Soifer VA, ed. Diffraction nanophotonics [In Russian]. Moscow: “Fizmatlit” Publisher; 2011. ISBN: 978-5-9221-1237-6.
  17. Kotlyar VV, Kovalev AA. Vortex laser beams [In Russian]. Samara: “Novaya Tehnika” Publisher; 2012. ISBN: 978-5-88940-125-4.
  18. Kotlyar VV, Kovalev AA, Skidanov RV, Soifer VA. Rotating elegant Bessel-Gaussian beams [In Russian]. Computer Optics 2014; 38(2): 162-170.
  19. Vinogradova IL, Meshkov IK, Grakhova EP, Sultanov AKh, Bagmanov VKh, Voronkova AV, Gizatullin AR. Secured RoF segment in subterahertz range providing independent optical modulation of radiochannel frequency characteristics and phased antenna array beamsteering parameter [In Russian]. Computer Optics 2018; 42(5): 786-799. DOI: 10.18287/2412-6179-2018-42-5-786-799.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20