(43-6) 21 * << * >> * Russian * English * Content * All Issues

Investigation of the influence of amplitude spiral zone plate parameters on produced energy backflow

E.S. Kozlova1,2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 933 kB

DOI: 10.18287/2412-6179-2019-43-6-1093-1097

Pages: 1093-1097.

Full text of article: Russian language.

Abstract:
Investigation of the influence of parameters of silver, aluminum, gold, and chromium spiral zone plates on the longitudinal component of Umov-Pointing vector in produced optical vortices by using the frequency-dependent finite-difference time-domain method is presented. It is shown that the aluminum spiral zone plate with a relief height of 50 nm gives an optical vortex with the smallest longitudinal component of Umov-Pointing vector on the optical axis. The gold spiral zone plate is the least effective for the formation of vortex beams with a reverse energy flow.

Keywords:
optical vortices, spiral zone plate, topological charge, circular polarization, reverse flow, Umov-Poynting vector, FDTD method.

Citation:
Kozlova ES. Investigation of the influence of amplitude spiral zone plate parameters on produced energy backflow. Computer Optics 2019; 43(6): 1093-1097. DOI: 10.18287/2412-6179-2019-43-6-1093-1097.

Acknowledgements:
This work was partly funded by the Russian Foundation for Basic Research under grants ##18-07-01380, 18-07-01122 and the RF Ministry of Science and Higher Education under an FSRC “Crystallography and Photonics” RAS' state project #007-ГЗ/Ч3363/26).

References:

  1. Kitamura K, Kitazawa M, Noda S. Generation of optical vortex beam by surface-processed photonic-crystal surface-emitting lasers. Opt Express 2019; 27(2): 1045-1050. DOI: 10.1364/OE.27.001045.
  2. Padgett MJ. Orbital angular momentum 25 years on. Opt Express 2017; 25(10): 11265-11274. DOI: 10.1364/OE.25.011265.
  3. Yevick A, Grier DG. Tractor beams for optical micromanipulation. Proc SPIE 2016; 9764: 97641A. DOI: 10.1117/12.2212730.
  4. Lavery MPJ, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd RW, Padgett MJ, Marquardt C, Leuchs G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci Adv 2017; 3(10): e1700552. DOI: 10.1126/sciadv.1700552.
  5. Takahashi F, Miyamoto K, Hidai H, Yamane K, Morita R, Omatsu T. Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle. Sci Rep 2016; 6: 21738. DOI: 10.1038/srep21738.
  6. Lan C, Yang Y, Geng Z, Li B, Zhou J. Electrostatic field invisibility cloak. Sci Rep 2015; 5: 16416. DOI: 10.1038/srep16416.
  7. Yuan G, Rogers ETF, Zheludev NI. “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields. Light: Science & Applications 2019; 8(2): 2047-7538. DOI: 10.1038/s41377-018-0112-z.
  8. Stafeev SS, Nalimov AG. Longitudinal component of the poynting vector of a tightly focused optical vortex with circular polarization [In Russian]. Computer Optics 2018; 42(2): 190-196. DOI: 10.18287/2412-6179-2018-42-2-190-196.
  9. Mitri FG. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation. Phys Rev A 2016; 94(2): 023801. DOI: 10.1103/PhysRevA.94.023801.
  10. Mitri FG. Reverse propagation and negative angular momentum density flux of an optical nondiffracting nonparaxial fractional Bessel vortex beam of progressive waves. J Opt Soc Am A 2016; 33(9): 1661-1667. DOI: 10.1364/JOSAA.33.001661.
  11. Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S, Fan D. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements. Sci Rep 2017; 7: 44096. DOI: 10.1038/srep44096.
  12. Kotlyar VV, Nalimov AG, Stafeev SS. Comparison of backward flow values in the sharp focus of light fields with polarization and phase singularity. Computer Optics 2019; 43(2): 174-183. DOI: 10.18287/2412-6179-2019-43-2-174-183.
  13. Kozlova ES. Modeling of the optical vortex generation using a silver spiral zone plate. Computer Optics 2018; 42(6): 977-984. DOI: 10.18287/2412-6179-2018-42-6-977-984.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20