(43-6) 23 * << * >> * Russian * English * Content * All Issues

Control of transverse mode content and polarization structure of terahertz coherent beams

V.S. Pavelyev1,2, Yu.Yu. Choporova3,4, N.D. Osintseva3,4, K.N. Tukmakov1,2, B.A. Knyazev3,4

Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
Budker Institute of Nuclear Physics of SB RAS, Novosibirsk, Russia,
Novosibirsk State University, Novosibirsk, Russia

 PDF, 1290 kB

DOI: 10.18287/2412-6179-2019-43-6-1103-1108

Pages: 1103-1108.

Full text of article: Russian language.

Abstract:
The paper is devoted to investigation of forming multimode coherent beams of terahertz radiation with pre-given transverse mode content and terahertz vector beams by use of silicon diffractive optical elements forming single modes from terahertz free-electron laser illuminating beam.

Keywords:
diffractive optics, Free-electron lasers, terahertz radiation, Gaussian-Hermite modes.

Citation:
Pavelyev VS, Choporova YuYu, Osintseva ND, Tukmakov KN, Knyazev BA. Control of transverse mode content and polarization structure of terahertz coherent beams. Computer Optics 2019; 43(6): 1103-1108. DOI: 10.18287/2412-6179-2019-43-6-1103-1108.

Acknowledgements:
This work was supported by the grant of the RSF ##19-72-20202 regarding the experimental scheme for the formation of multimode beams with the given transverse-mode composition. The work was partly funded by the Russian Federation Ministry of Science and Higher Education within a state contract with the “Crystallography and Photonics” # 007-ГЗ/Ч3363/26 regarding the analysis of experimental results. Experiments were carried out using the shared research center “Siberian Synchrotron and Terahertz Radiation Centre” at the Novosibirsk FEL facility.

References:

  1. Kulipanov GN, et al. Novosibirsk free electron laser–facility description and recent experiments. IEEE Transactions on Terahertz Science and Technology 2015; 5(5): 798-809.
  2. Glyavin MYu. Development and applications of THz gyrotrons. EPJ Web of Conferences 2017; 149: 01008.
  3. Bubnov GM, Lesnov IV, Vdovin VF. Data rates of SubTHz wireless telecommunication channels. EPJ Web of Conferences 2017; 149: 02012.
  4. Kulipanov GN, Lisenko AA, Matvienko GG, Oshlakov VK, Kubarev VV, Chesnokov EN, Babchenko SV. Experimental study of the interaction between terahertz radiation from the Novosibirsk free-electron laser and water aerosol [In Russian]. Optika Atmosfery i Okeana 2014; 27(12): 1070-1073.
  5. Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2): 023846. DOI: 10.1103/PhysRevA.96.023846.
  6. Sobolev DI, Denisov GG, Eremeev AG, Holoptsev VV, Tsvetkov AI. Polarization-dependent TE11-to-TE11/TE01 waveguide mode converter for transmission line mode switching. EPJ Web of Conferences 2017; 149: 04017.
  7. Agafonov AN, Choporova YuYu, Kaveev AK, Knyazev BA, Kropotov GI, Pavelyev VS, Tukmakov KN, Volodkin BO. Control of transverse mode spectrum of Novosibirsk free electron laser radiation. Appl Opt 2015; 54(12): 3635-3639. DOI: 10.1364/AO.54.003635.
  8. Pavelyev VS, Agafonov AN, Volodkin BO, Tukmakov KN, Knyazev BA, Choporova YuYu. Terahertz optical elements for control of high-power laser irradiation. EPJ Web of Conferences 2018; 195: 07006.
  9. Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. An experimental-study into the power distribution over transverse-modes in a fiber-optic waveguide with the use of spatial filters. Kvantovaya Elektronika 1984; 11(9): 1869-1871.
  10. Agafonov AN, Volodkin BO, Volotovsky SG, et al. Silicon optics for focusing of terahertz laser radiation in a given two-dimensional domain. Computer Optics 2013; 37(4): 464-470.
  11. Agafonov AN, Volodkin BO, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Soifer VA, Tukmakov KN, Tsygankova EV, Choporova YuYu. Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectronics, Instrumentation and Data Processing 2013; 49(2): 189-195. DOI: 10.3103/S875669901302012X.
  12. Golub MA, Karpeev SV, Krivoshlykov SG, Prokhorov AM, Sisakyan IN, Soifer VA. Spatial filter investigation of the distribution of power between transverse modes in a fiber waveguide. Sov J Quantum Electron 1984; 14(9): 1255-1256. DOI: 10.1070/QE1984v014n09ABEH006201.
  13. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Wiley & Sons Inc; 2002. ISBN: 978-0-471-09533-0.
  14. Golub MA, Karpeev SV, Kazanskiĭ NL, Mirzov AV, Sisakyan IN, Soĭfer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum Electron 1988; 18(3): 392-393. DOI: 10.1070/QE1988v018n03ABEH011528.
  15. Soifer VA, Golub MA. Laser beam mode selection by computer generated holograms. CRC Press; 1994. ISBN: 0-8493-2476-9.
  16. Alferov SV, Khonina SN, Karpeev SV. Study of polarization properties of fiber-optics probes with use of a binary phase plate. J Opt Soc Am A 2014; 31(4): 802-807. DOI: 10.1364/JOSAA.31.000802.
  17. Khonina SN, Kotlyar VV, Soifer VA, Honkanen M, Lautanen J, Turunen J. Generation of rotating Gauss-Laguerre modes with binary-phase diffractive optics. J Mod Opt 1999; 46(2): 227-238. DOI: 10.1080/09500349908231267.
  18. Winnerl S, et al. Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas. Opt Express 2009; 17(3): 1571-1576.
  19. Kan K, et al. Radially polarized terahertz waves from a photoconductive antenna with microstructures. Appl Phys Lett 2013; 102(22): 221118.
  20. Deibel JA, Escarra MD, Mittleman DM. Photoconductive terahertz antenna with radial symmetry. Quantum Electronics and Laser Science Conference 2005; 2: 1239-1241.
  21. Grosjean T, et al. Linear to radial polarization conversion in the THz domain using a passive system. Opt Express 2008; 16(23): 18895-18909.
  22. Koechner W. Solid-state laser engineering. New York: Springer-Verlag; 1988.
  23. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized laser beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  24. Knyazev BA, et al. Real-time imaging using a high-power monochromatic terahertz source: comparative description of imaging techniques with examples of application. Journal of Infrared, Millimeter, and Terahertz Waves 2011; 32: 1207-1222.
  25. Khonina SN, Savelyev DA. High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. J Exp Theor Phys 2013; 117(4): 623-630. DOI: 10.1134/S1063776113120157.
  26. Degtyarev SA, Porfirev AP, Khonina SN. Photonic nanohelix generated by a binary spiral axicon. Appl Opt 2016; 55(12): B44-B48. DOI: 10.1364/AO.55.000B44.
  27. Khonina SN, Porfirev AP. 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl Phys B 2018; 124(9): 191. DOI: 10.1007/s00340-018-7060-4
  28. Kotlyar VV, Stafeev SS, Nalimov AG, Schulz S, O’Faolain L. Two-petal laser beam near a binary spiral axicon with topological charge 2. Opt Laser Technol 2019; 119: 105649. DOI: 10.1016/j.optlastec.2019.105649.
  29. Bouchal Z, et al. Orbital angular momentum of mixed vortex beams. Proc SPIE 2007; 6609: 660907.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20