(44-1) 04 * << * >> * Russian * English * Content * All Issues

Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens

S.S. Stafeev 1,2, E.S. Kozlova 1,2, A.G. Nalimov 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,

Molodogvardeyskaya 151, 443001, Samara, Russia,

Samara National Research University, Moskovskoye shosse, 34, 443086, Samara, Russia

 PDF, 603 kB

DOI: 10.18287/2412-6179-CO-633

Pages: 29-33.

Full text of article: Russian language.

Abstract:
In this paper, we numerically simulate the focusing of a second-order cylindrical vector beam with a gradient index Mikaelian lens. It is shown that the lens forms a region of the reverse energy flow near its output surface. If the lens has an on-axis micropit, the region of the direct energy flow can be confined within the lens material, whereas that of the reverse energy flow is put out in free space.

Keywords:
Poynting vector, energy backflow, gradient index lens, cylindrical vector beam, scattering force.

Citation:
Stafeev SS, Kozlova ES, Nalimov AG. Focusing a second-order cylindrical vector beam with a gradient index Mikaelian lens. Computer Optics 2020; 44(1): 29-33. DOI: 10.18287/2412-6179-CO-633.

Acknowledgements:
The work was partly funded by the Russian Science Foundation under grant # 18-07-01122 ("Gradient index lens"), the Russian Foundation for Basic Research under grant # 18-19-00595 ("Gradient index lens with metallic layer"), and grant # 18-07-01380 (" Gradient index lens with a micropit"), and the RF Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS under agreement ("Introduction").

References:

  1. Grosjean T, Gauthier I. Longitudinally polarized electric and magnetic optical nano-needles of ultra high lengths. Opt Commun 2013; 294: 333-337.
  2. Wu Z, Zhang K, Zhang S, Jin Q, Wen Z, Wang L, Dai L, Zhang Z, Chen H, Liang G, Liu Y, Chen G. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams. Opt Express 2018; 26(13):16585.
  3. Guan J, Lin J, Chen C, Ma Y, Tan J, Jin P. Transversely polarized sub-diffraction optical needle with ultra-long depth of focus. Opt Commun 2017; 404: 118-123.
  4. Yu Y, Huang H, Zhou M, Zhan Q. Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps. Opt Commun 2018; 407: 398-401.
  5. Zheng C, Su S, Zang H, et al. Characterization of the focusing performance of axial line-focused spiral zone plates. Appl Opt 2018; 57(14): 3802-3807.
  6. Lin J, Chen R, Jin P, Cada M, Ma Y. Generation of longitudinally polarized optical chain by 4 π focusing system. Opt Commun 2015; 340: 69-73.
  7. Yu Y, Zhan Q. Generation of uniform three-dimensional optical chain with controllable characteristics. J Opt 2015; 17(10): 105606.
  8. Kotlyar VV, Stafeev SS, Kovalev AA. Reverse and toroidal flux of light fields with both phase and polarization higher-order singularities in the sharp focus area. Opt Express 2019; 27(12): 16689-16702. DOI: 10.1364/OE.27.016689.
  9. Kotlyar VV, Kovalev AA, Nalimov AG. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt Lett 2018; 43(12): 2921-2924. DOI: 10.1364/OL.43.002921.
  10. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. 10.1103/PhysRevA.99.033840.
  11. Stafeev SS, Kotlyar VV, Nalimov AG, Kozlova ES. The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam. IEEE Photon J 2019; 11(4): 4500810. DOI: 10.1109/JPHOT.2019.2921669.
  12. Novotny L, Hecht B. Principles of nano-optics. Cambridge: Cambridge University Press; 2006.
  13. Sukhov S, Dogariu A. On the concept of “tractor beams.” Opt Lett 2010; 35(22): 3847–3849.
  14. Mikaelian AL. Application of stratified medium for waves focusing. Doklady Akademii Nauk SSSR 1951; 81: 569-571.
  15. Rivas-Moscoso JM, Nieto D, Gómez-Reino C, Fernández-Pousa CR. Focusing of light by zone plates in Selfoc gradient-index lenses. Opt Lett 2003; 28(22): 2180-2182.
  16. Hewak DW, Lit JWY. Solution deposited optical waveguide lens. Appl Opt 1989; 28(19): 4190-4198.
  17. Zentgraf T, Liu Y, Mikkelsen MH, Valentine J, Zhang X. Plasmonic Luneburg and Eaton lenses. Nat Nanotechnol 2011; 6(3): 151-155.
  18. Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 6th (corrected) ed. Elsevier; 2013.
  19. Fathollahi Khalkhali T, Alipour-Beyraghi M, Lalenejad M, Bananej A. Polarization-independent and super broadband flat lens composed of graded index annular photonic crystals. Opt Commun 2019; 435: 202-211.
  20. Gaufillet F, Akmansoy É. Design of flat graded index lenses using dielectric graded photonic crystals. Opt Mater 2015; 47: 555-560.
  21. Gilarlue MM, Badri SH, Rasooli Saghai H, Nourinia J, Ghobadi C. Photonic crystal waveguide intersection design based on Maxwell’s fish-eye lens. Photon Nanostr 2018; 31: 154-159.
  22. Xia F, Li S, Zhang K, Jiao L, Kong W, Dong L, Yun M. Negative Luneburg lens based on the graded annular photonic crystals. Physica B 2018; 545: 233-236.
  23. Lin SCS, Huang TJ, Sun JH, Wu TT. Gradient-index phononic crystals. Phys Rev B 2009; 79(9): 094302.
  24. Zhu Y, Yuan W, Sun H, Yu Y. Broadband ultra-deep sub-diffraction-limit optical focusing by metallic graded-index (MGRIN) lenses. Nanomaterials 2017; 7(8): 221.
  25. Gilarlue MM, Nourinia J, Ghobadi C, Badri SH, Rasooli Saghai H. Multilayered Maxwell’s fisheye lens as waveguide crossing. Opt Commun 2019; 435: 385-393.
  26. Badri SH, Gilarlue MM. Maxwell’s fisheye lens as efficient power coupler between dissimilar photonic crystal waveguides. Optik 2019; 185: 566-570.
  27. Behera S, Kim K. Design and studies on gradient index metasurfaces for broadband polarization-independent, subwavelength, and dichroic focusing. Appl Opt 2019; 58(18): 5128-5135.
  28. Kotlyar VV, Stafeev SS, Nalimov AG. Tight focusing of laser light by microoptics. Samara: Novaya Technika Publisher; 2018.
  29. Zhang XA, Bagal A, Dandley EC, Zhao J, Oldham CJ, Wu BI, Parsons GN, Chang CH. Ordered 3D thin-shell nanolattice materials with near-unity refractive indices. Adv Funct Mater 2015; 25(42): 6644-6649.
  30. Kwon DH, Werner DH. Low-index metamaterial designs in the visible spectrum. Opt Express 2007; 15(15): 9267-9272.
  31. Kotlyar VV, Nalimov AG, Stafeev SS, O’Faolain L. Single metalens for generating polarization and phase singularities leading to a reverse flow of energy. J Opt 2019; 21(5): 055004.
  32. Novitsky AV, Novitsky DV. Negative propagation of vector Bessel beams. J Opt Soc Am A 2007; 24(9): 2844-2849.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20