(44-2) 01 * << * >> * Russian * English * Content * All Issues

Topological charge of optical vortices and their superpositions

V.V. Kotlyar 1,2, A.A. Kovalev  1,2, A.V. Volyar  3

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,

Molodogvardeyskaya 151, 443001, Samara, Russia,

Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia,

Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,

Academician Vernadsky 4, 295007, Simferopol, Russia

 PDF, 1603 kB

DOI: 10.18287/2412-6179-CO-685

Pages: 145-154.

Full text of article: Russian language.

An optical vortex passed through an arbitrary aperture (with the vortex center found within the aperture) or shifted from the optical axis of an arbitrary axisymmetric carrier beam is shown to conserve the integer topological charge (TC). If the beam contains a finite number of off-axis optical vortices with different TCs of the same sign, the resulting TC of the beam is shown to be equal to the sum of all constituent TCs. For a coaxial superposition of a finite number of the Laguerre-Gaussian modes (n, 0), the resulting TC equals that of the mode with the highest TC (including sign). If the highest positive and negative TCs of the constituent modes are equal in magnitude, then TC of the superposition is equal to that of the mode with the larger (in absolute value) weight coefficient. If both weight coefficients are the same, the resulting TC equals zero. For a coaxial superposition of two different-amplitude Gaussian vortices, the resulting TC equals that of the constituent vortex with the larger absolute value of the weight coefficient amplitude, irrespective of the relation between the individual TCs.

topological charge (TC), optical vortex, diaphragm, displacement, optical vortices superposition.

Kotlyar VV, Kovalev AA, Volyar AV. Topological charge of optical vortices and their superpositions. Computer Optics 2020; 44(2): 145-154. DOI: 10.18287/2412-6179-CO-685.

This work was supported by the Russian Foundation for Basic Research under RFBR grants ## 18-29-20003 ("TC of an optical vortex passing through an amplitude mask" and "TC of a coaxial superposition of optical vortices"), 19-29-01233 ("TC of an optical vortex with the initially fractional charge"), and 18-07-01129 ("TC of an optical vortex with multiple phase-singularity centers" and "TC in an arbitrary plane"), the Russian Science Foundation under # grant 17-19-01186 ("TC of an off-axis optical vortex" and "TC of an elliptic vortex in the Gaussian beam"), and the Ministry of Science and Higher Education of the Russian Federation within a government project of the Federal Research Center for Crystallography and Photonics of the Russian Academy of Sciences under agreement 007-ГЗ/Ч3363/26 ("TC of superposition of two Gaussian optical vor-tices").


  1. Allen L, Beijersbergen M, Spreeuw R, Woerdman J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45: 8185.
  2. Volyar A, Bretsko M, Akimova Ya, Egorov Yu. Vortex avalanche in the perturbed singular beams. J Opt Soc Am A 2019; 36(6): 1064-1071.
  3. Zhang Y, Yang X, Gao J. Orbital angular momentum transformation of optical vortex with aluminium metasurfaces. Sci Rep 2019; 9: 9133.
  4. Zhang H, Li X, Ma H, Tang M, Li H, Tang J, Cai Y. Grafted optical vortex with controllable orbital angular momentum distribution. Opt Express 2019; 27(16): 22930-22938.
  5. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA. Shaping and processing the vortex spectra of singular beams with anomalous orbital angular momentum. Computer Optics 2019; 43(4): 517-527. DOI: 10.18287/2412-6179-2019-43-4-517-527.
  6. Kotlyar VV, Kovalev AA, Porfirev AP. Calculation of fractional orbital angular momentum of superpositions of optical vortices by intensity moments. Opt Express 2019; 27(8): 11236-11251. DOI: 10.1364/OE.27.011236.
  7. Kotlyar VV, Kovalev AA, Porfirev AP, Kozlova ES. Orbital angular momentum of a laser beam behind an off-axis spiral phase plate. Opt Lett 2019; 44(15): 3673-3676. DOI: 10.1364/OL.44.003673.
  8. Siegman AE. Lasers. University Science; 1986.
  9. Durnin J, Miceli JJ, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58: 1499-1501.
  10. Gori F, Guattary G, Padovani C. Bessel-Gauss beams. Opt Commun 1987; 64(6): 491-495.
  11. Kotlyar VV, Skidanov RV, Khonina SN, Soifer VA. Hypergeometric modes. Opt Lett 2007; 32(7): 742-744.
  12. Bandres MA, Gutierrez-Vega JC. Circular beams. Opt Lett 2008; 33: 177-179.
  13. Kotlyar VV, Kovalev AA, Soifer VA. Asymmetric Bessel modes. Opt Lett 2014; 39(8): 2395-2398. DOI: 10.1364/OL.39.002395.
  14. Kovalev AA, Kotlyar VV, Porfirev AP. Asymmetric Laguerre-Gaussian beams. Phys Rev A 2016; 93(6): 063858. DOI: 10.1103/PhysRevA.93.063858.
  15. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A 2004; 6: 259-268.
  16. Volyar AV, Bretsko MV, Akimova YaE, Egorov YuA, Milyukov VV. Sectorial perturbation of vortex beams: Shannon entropy, orbital angular momentum and topological charge. Computer Optics 2019; 43(5): 723-34. DOI: 10.18287/2412-6179-2019-43-5-723-734.
  17. Kotlyar VV, Kovalev AA, Porfirev AP. Asymmetric Gaussian optical vortex. Opt Lett 2017; 42(1): 139-142. DOI: 10.1364/OL.42.000139.
  18. Kotlyar VV, Kovalev AA, Porfirev AP, Abramochkin EG. Fractional orbital angular momentum of a Gaussian beam with an embedded off-axis optical vortex. Computer Optics 2017; 41(1): 22-29. DOI: 10.18287/2412-6179-2017-41-1-22-29.
  19. Indebetouw G. Optical vortices and their propagation. J Mod Opt 1993; 40(1): 73-87.
  20. Abramochkin E, Volostnikov V. Spiral-type beams. Opt Commun 1993; 102: 336-350.
  21. Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. New York: Academic; 1965.
  22. Gotte JB, Franke-Arnold S, Zambrini R, Barnett SM. Quantum formulation of fractional orbital angular momentum. J Mod Opt 2007; 54(12): 1723-1738.
  23. Gutiérrez-Vega JC, López-Mariscal C. Nondiffracting vortex beams with continuous orbital angular momentum order dependence. J Opt A Opt 2008; 10: 015009.
    Kotlyar VV, Kovalev AA, Pofirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  24. Liang G, Cheng W. Splitting and rotating of
  25. optical vortices due to non-circular symmetry in amplitude and phase distributions of the host beams. Phys Lett A 2020; 384: 126046.


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20