(44-2) 03 * << * >> * Russian * English * Content * All Issues

Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field

E.K. Bashkirov 1

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1192 kB

DOI: 10.18287/2412-6179-CO-595

Pages: 167-176.

Full text of article: Russian language.

Abstract:
In this paper, we investigate the entanglement between two two-level atoms non-resonantly in-teracting with a thermal field of a lossless one-mode resonator via degenerate two-photon transi-tions. On the basis of the exact solution of the time-dependent density matrix we calculate the negativity as a measure of atomic entanglement. We show that for separable initial atomic states a slight atom-field detuning may generate the high amount of atom-atom entanglement. The re-sults also show that for non-resonant atom-field interaction the entanglement induced by nonlin-ear two-photon interaction is smaller than that induced by one-photon interaction in contrast to the resonant interaction situation. For a Bell-type entangled initial atomic state we obtain that if the detuning increases, there is an appreciable decrease in the amplitudes of the negativity oscilla-tions. The results also show that elimination of the sudden death of entanglement for non-resonant two-photon atom-field interaction may take place.

Keywords:
two-level atoms, two-photon interaction, thermal field, entanglement, sudden death of entanglement.

Citation:
Bashkirov EK. Dynamics of entanglement of atoms with two-photon transitions induced by a thermal field. Computer Optics 2020; 44(2): 167-176. DOI: 10.18287/2412-6179-CO-595.

References:

  1. Buluta I, Ashhab S, Nori F. Natural and artificial atoms for quantum computation. Rep Prog Phys 2011; 74: 104401.
  2. Xiang Z-L, Ashhab S, You JQ, Nori F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev Mod Phys 2013; 85: 623-653.
  3. Georgescu IM, Ashhab S, Nori F.  Quantum simulation. Rev Mod Phys 2014; 88: 153-185.
  4. Gu X, Kockum AF, Miranowicz A, Liu Y-X, Nori F. Microwave photonics with superconducting quantum circuits. Phys Rep 2017; 718-719: 1-102.
  5. Wendin G. Quantum information processing with superconducting circuits: a review. Rep Prog Phys 2017; 80: 106001.
  6. Shore BW, Knight PL. The Jaynes-Cummings model. J Mod Opt 1993; 40(7): 1195-1238.
  7. Larson J. Dynamics of the Jaynes-Cummings and Rabi models: Old wine in new bottles. Physica Scripta 2007; 76: 146-160.
  8. Garraway BM. The Dicke model in quantum optics: Dicke model revisited. Phil Trans R Soc A 2011; 369(1939): 1137-1155.
  9. Leibfried D, Blatt R, Monroe C, Wineland D Quantum dynamics of single trapped ions. Rev Mod Phys 2003; 75: 281-324.
  10. Walther H, Varcoe BTH, Englert B-G, Becker T. Cavity quantum electrodynamics. Rep Prog Phys 2006; 69: 325-1382.
  11. Haroche S., Brune M., Raimond JM. From cavity to circuit quantum electrodynamics. Nature Phys 2020; 16: 243–246.
  12. Schuster I, Kubanek A, Fuhrmanek A, Puppe T, Pinkse PWH, Murr K, Rempe G. Nonlinear spectroscopy of photons bound to one atom. Nature Phys 2008; 4: 382-385.
  13. Mlynek JA, Abdumalikov Jr AA, Fink JM, Steffen L,  Baur M, Lang C, van Loo AF, Wallraff A. Demonstrating W-type entanglement of Dicke states in resonant cavity quantum electrodynamics. Phys Rev A 2010; 86: 053838.
  14. Altomare F, Park JI, Cicak K, Sillanpää MA, M. Allman, MS, Li D, Sirois A, Strong JA, Whittaker JD, Simmonds RW Tripartite interactions between two phase qubits and a resonant cavity. Nature Phys 2010; 6: 777-781.
  15. Sun G, Zhou Z, Mao B, Wen X, Wu P, Han S. Entanglement dynamics of a superonducting phase qubit coupled to a two-level system. Phys Rev B 2012; 86: 064502.
  16. Niemczyk T, Deppe F, Hueb H, Menzel EP, Hocke F, Schwarz MJ, Garcia-Ripoll JJ, Zueco D, Hummer T, Solano E, Marx A, Gross R. Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong coupling regime. Nature Phys 2010; 6: 772-776.
  17. Turcu ICE, Shen B, Neely D, Sarri G, Tanaka KA, McKenna P, Mangles SPD, Yu T-P, Luo W, Zhu X-L, Yin Y. Select Quantum electrodynamics experiments with colliding petawatt laser pulses Quantum electrodynamics experiments with colliding petawatt laser pulses. High Power Laser Sci Eng 2019; 7: 1-8.
  18. Dell'Anno F, De Siena S, Illuminati F. Multiphoton quantum optics and quantum state engineering. Phys Rep 2006; 428: 53-168.
  19. Villas-Boas CJ, Rossatto DZ. Multiphoton Jaynes-Cum­mings model: Arbitrary rotations in fock space and quantum filters. Phys Rev Lett 2019; 122: 123604.
  20. Vogel W, de Matos Filho RL Nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys Rev A 1995; 52(5): 4214-4217.
  21. Kubanek A, Ourjoumtsev A, Schuster I, Koch M, Pinkse PWH, Murr K, Rempe G. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys Rev Lett 2008; 101: 203602.
  22. Kim H, Sridharan D, Shen TC, Solomon GS, Waks E. Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning. Opt Express 2011; 19: 2589-2599.
  23. Poletto S, Gambetta JM, Merkel ST, Smolin JA, Chow JM, Corcoles AD, Keefe GA, Rothwell MB, Rozen JR, Abraham DW, Rigetti C, Steffen M. Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. Phys Rev Lett 2012; 109(24): 240505.
  24. Deppe F, Mariantoni M, Menzel EP, Marx A, Saito S, Kakuyanag K, Tanaka H, Meno T, Semba K, Takayanagi H, Solano E, Grossi R. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys 2008; 4: 686-691.
  25. Campagne-Ibarcq P, Zalys-Geller E, Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L, Schoelkopf RJ, Devoret MH. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys Rev Lett 2018; 120: 200501.
  26. Di Stefano O, Settineri A, Macrì V, Garziano L, Stassi R, Savasta S, Nori F. Resolution of gauge ambiguities in ultrastrong coupling cavity quantum electrodynamics. Nature Phys 2019; 15: 803-808. DOI: 10.1038/s41567-019-0534-4.
  27. Felicetti S, Rossatto DZ, Rico E, Solano E, Forn-Diaz P. Two-photon quantum Rabi model with superconducting circuits. Phys Rev A 2018; 97: 013851.
  28. Shevchenko SN, Omelyanchouk AN, Il'ichev E. Multiphoton transitions in Josephson-junction qubits. Low Temp Phys 2012; 38(4): 360-381.
  29. Kockum AF, Miranowicz A, De Lierato S, Savasta S, Nori F. Ultrastrong coupling between light and matter. Nat Rev Phys 2019; 1: 19-40.
  30. Plenio MB, Huelga SF, Beige A, Knight PL. Cavity-loss-induced generation of entangled atoms. Phys Rev A 1999; 59: 2468-2475.
  31. Bose S, Fuentes-Guridi I, Knight PL, Vedral V. Subsystem purity as an  enforcer of entanglement. Phys Rev Lett 2001; 87: 050401.
  32. Kim MS, Lee J, Ahn D, Knight PL. Entanglement induced by a single-mode heat environment. Phys Rev A 2002; 65: 040101
  33. Zhou L, Song H-S. Entanglement induced by a single-mode thermal field and criteria for entanglement. J Opt B 2002; 4: 425-429.
  34. Bashkirov EK. Entanglement induced by the two-mode thermal noise. Laser Phys Lett 2006; 3: 145-150.
  35. Zhang B. Entanglement between two qubits interacting with a slightly detuned thermal field. Opt Commun 2010; 283: 4676-4679.
  36. Aguiar LS, Munhoz PP, Vidiella-Barranco A, Roversi JA. The entanglement of two dipole-dipole coupled in a cavity interacting with a thermal field. J Opt B 2005; 7: S769-S771.
  37. Hu Y-H, Fang M-F, Wu Q. Atomic coherence control on the entanglement of two atoms in two-photon processes. Chinese Phys 2007; 16: 2407-2414.
  38. Hu Y-H, Fang M-F, Jiang C-L, Zeng K. Coherence-enhanced entanglement between two atoms at high temperature. Chinese Phys B 2008; 17: 1784-1790.
  39. Liao X-P, Fang M-F, Cai J-W, Zheng X-J. The entanglement of two dipole-dipole  coupled atoms interacting with a thermal field via two-photon process. Chinese Phys B 2008; 17: 2137-2142.
  40. Bashkirov EK, Mastyugin MS. Entanglement between two qubits induced by thermal field. J Phys: Conf Ser 2016; 735(1): 012025.
  41. Bashkirov EK, Mastyugin MS. The influence of atomic coherence and dipole-dipole interaction on entanglement of two qubits with nondegenerate two-photon transitions. Pramana 2006; 84(1): 127-135.
  42. Bashkirov EK, Stupatskaya MP. Entanglement of two atoms interacting with a thermal electromagnetic field. Computer Optics 2011; 35(2): 249-243.
  43. Bashkirov EK, Mastyugin MS. The influence of the dipole-dipole interaction and atomic coherence on the entanglement of two atoms with degenerate two-photon transitions. Optisc and Spectroscopy 2014; 116(4): 630-634.
  44. Bashkirov EK, Mastyugin MS. Entanglement of two superconducting qubits interacting with two-mode thermal field. Computer Optics 2013; 37(3): 278-285.
  45. Bashkirov EK, Litvinova DV. Entanglement between qubits due to the atomic coherence. Computer Optics 2014; 38(4): 663-669.
  46. Bashkirov EK Thermal entanglement between a Jaynes-Cummings atom and an isolated atom. Int J Theor Phys 2018; 57: 3761-3771.
  47. Cardoso WB, Avelar  AT,  Baseia B,  de Almeida NG Entanglement sudden death via two-photon processes in cavity QED. J Phys B: At Mol Opt Phys 2009; 42(19): 195507.
  48. Rephaeli E,  Fan S. Few-photon single-atom cavity QED with input-output formalism in Fock space. IEEE J Sel Top Quantum Electron 2012; 18: 1754-1762.
  49. Bashkirov EK, Mastyugin MS. The dynamics of entanglement in two-atom Tavis-Cummings model with non-degenerate two-photon transitions for four-qubits initial atom-field entangled states. Opt Commun 2014; 313: 170-174.
  50. Yang G, Gu W-J, Li G, Zou B, Zhu Y. Quantum nonlinear cavity quantum electrodynamics with coherently prepared atoms. Phys Rev A 2015; 92: 033822.
  51. Puebla R, Hwang MJ, Casanova J, Plenio MB. Probing the dynamics of a superradiant quantum phase transition with a single trapped ion. Phys Rev A 2017; 95: 063844.
  52. Singh S, Gilhare K. Evolution of atomic entanglement for different cavity-field statistics in single-mode two-photon process. J Exp Theor Phys 2018; 127(3): 391-397.
  53. Al Naim AF, Khan JY, Khalil EM, Abdel-Khalek S. Effect of Kerr medium and Stark Shift parameter om Wehrl entropy and the field purity for two-photon Jaynes-Cumming model under dispersive approximation. J Russ Laser Res 2019; 40(1): 20-29.
  54. Fink JM, Baur M, Bianchetti К, Filipp S, Göppl M, Leek PJ, Steffen L, Blais A, Wallraff A. Thermal excitation of multi-photon dressed states in circuit quantum electrodynamics. Physica Scripta 2009; T137: 014013.
  55. Zheng S.-B. Robust and high-speed entanglement engineering in cavity QED and ion trap with a single slightly detuned interaction. J Phys B: At Mol Opt Phys 2006; 39: 2505-2513.
  56. Bashkirov EK. Dynamics of the collective spontaneous emission of two three-level atoms in a cavity. Optics and Spectroscopy 2006; 100(4): 613-616.
  57. Pavelev AV, Semin VV. Investigation of non-markovian dynamics of two dipole-dipole interacting qubits based on numerical solution of the non-linear stochastic Schrödinger equation. Computer Optics 2019; 43(2): 168-173. DOI: 10.18287/2412-6179-2019-43-2-168-173.

 


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20