(44-2) 10 * << * >> * Russian * English * Content * All Issues

An interference scheme for generating inhomogeneously polarized laser radiation using a spatial light modulator

S.V. Karpeev 1,2, V.V. Podlipnov 1,2, A.M. Algubili  2

IPSI RAS – Branch of the FSRC “Crystallography and Photonics” RAS,

443001, Samara, Russia, Molodogvardeyskaya 151,

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 882 kB

DOI: 10.18287/2412-6179-CO-698

Pages: 214-218.

Full text of article: Russian language.

An optical system for converting linearly polarized laser beams into cylindrical vector beams is developed and experimentally investigated. The scheme is based on the coherent addition of mode beams using a Mach-Zehnder interferometer. The simplicity and versatility of the optical setup is achieved through the use of different sections in the area of the spatial light modulator for the si-multaneous generation of two spatially separated given mode beams. Each of the beams then propagates in one of the arms of the interferometer and undergoes the necessary polarization-phase transformations to obtain a cylindrical vector beam after the addition of mode beams.

spatial light modulator, coherent superposition, cylindrical vector beams.

Karpeev SV, Podlipnov VV, Algubili AM. An interference scheme for generating in-homogeneously polarized laser radiation using a spatial light modulator. Computer Optics 2020; 44(2): 214-218. DOI: 10.18287/2412-6179-CO-698.

This work was supported by the RF Ministry of Science and Higher Education under the government project of FSRC «Crystallography and Photonics» RAS ("DOE calculation") and Russian Science Foundation under projects Nos. 18-29-20045-mk ("Experimental research") and 18-07-01470 ("Formation of vortex beams").


  1. Zhan Q. Cylindrical vector beams: from mathematical concepts to applications. Adv Opt Photon 2009; 1(1): 1-57.
  2. Niziev VG, Nesterov AV. Influence of beam polarization on laser cutting efficiency. J Phys D: Appl Phys 1999; 32: 1455-1461.
  3. Alferov SV, Karpeev SV, Khonina SN, Tukmakov KN, Moiseev OYu, Shulyapov SA, Ivanov KA, Savel’ev-Trofimov AB. On the possibility of controlling laser ablation by tightly focused femtosecond radiation. Quantum Electronics 2014; 44(11): 1061-1065. DOI: 10.1070/QE2014v044n11ABEH015471.
  4. Khonina SN, Ustinov AV, Degtyarev SA. Inverse energy flux of focused radially polarized optical beams. Phys Rev A 2018; 98: 043823. DOI: 10.1103/PhysRevA.98.043823.
  5. Khonina SN, Alferov SV, Karpeev SV. Strengthening the longitudinal component of the sharply focused electric field by means of higher-order laser beams. Opt Lett 2013; 38(17): 3223-3226. DOI: 10.1364/OL.38.003223.
  6. Khonina SN, Golub I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. J Opt Soc Am A 2012; 29(10): 2242-2246. DOI: 10.1364/JOSAA.29.002242.
  7. Khonina SN, Volotovsky SG, Ustinov AV, Porfirev AP  Spatiotemporal dynamics of the polarisation state of laser radiation performed by lens-axicon combinations  Physics Letters A 2019; 383(21): 2535-2541. DOI: 10.1016/j.physleta.2019.05.006
  8. Wang H, Liu D, Zhou Z The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere Appl Phys B 2010; 101(1): 361-369. DOI: 10.1007/s00340-010-4106-7.
  9. Kozawa Y, Sato Sh. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett 2005; 30(22): 3063-3065.
  10. Khonina SN, Karpeev SV, Morozov AA, Paranin VD. Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements. J Mod Opt 2016; 63(13): 1239-1247. DOI: 10.1080/09500340.2015.1137368.
  11. Khonina SN, Karpeev SV, Paranin VD, Morozov AA. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals. Phys Lett A 2017; 381(30): 2444-2455. DOI: 10.1016/j.physleta.2017.05.025.
  12. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  13. Alferov SV, Karpeev SV, Khonina SN, Moiseev OYu. Experimental study of focusing of inhomogeneously polarized beams generated using sector polarizing plates. Computer Optics 2014; 38(1): 57-64.
  14. Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Tukmakov KN. Anisotropic diffractive optical element for generating hybrid-polarized beams. Opt Eng 2018; 58(8): 082402. DOI: 10.1117/1.OE.58.8.082402.
  15. Khonina SN, Ustinov AV, Fomchenkov SA, Porfirev AP. Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates. Sci Rep 2018; 8: 14320. DOI: 10.1038/s41598-018-32469-0.
  16. Karpeev SV, Paranin VD, Khonina SN. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19(5): 055701. DOI: 10.1088/2040- 8986/aa640c.
  17. Podlipnov VV, Karpeev SV, Paranin VD. Fully symmetric diffraction-interference beam shaper for radially polarized light on a 1530-nm wavelength. Computer Optics 2019; 43(4): 577-585. DOI: 10.18287/2412-6179-2019-43-4-577-585.
  18. Karpeev SV, Paranin VD, Khonina SN. Generation of nonuniformly polarised vortex Bessel beams by an interference polariser. Quantum Electron 2018; 48(6): 521-526. DOI: 10.1070/QEL16603.
  19. Tidwell SC, Ford DH, and Kimura WD. Generating radially polarized beams interferometrically. Appl Opt 1990; 29: 2234-2239. DOI: 10.1364/AO.29.002234.
  20. Khonina SN, Karpeev SV, Alferov SV. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter. Opt Lett 2012; 37(12): 2385-2387. DOI: 10.1364/OL.37.002385.
  21. Khonina SN, Karpeev SV. Grating-based optical scheme for the universal generation of inhomogeneously polarized beams. Appl Opt 2010; 49(10): 1734-1738. DOI: 10.1364/AO.49.001734.
  22. Khonina SN, Karpeev SV. Generating inhomogeneously polarized higher-order laser beams by use of diffractive optical elements. J Opt Soc Am A 2011; 28(10): 2115-2123. DOI: 10.1364/JOSAA.28.002115.
  23. Davis JA, McNamara DE, Cottrell DM, Sonehara T. Two dimensional polarization encoding with a phase only liquid-crystal spatial light modulator. Appl Opt 2000; 39: 1549-1551.
  24. Neil MAA, Massoumian F, Juškaitis R, Wilson T. Method for the generation of arbitrary complex vector wave fronts. Opt Lett 2002; 27(21): 1929-1931.
  25. Kohler C, Haist T, Schwab X, Osten W. Hologram optimization for SLM-based reconstruction with regard to polarization effects. Opt Express 2008; 16(19): 14853-14861.
  26. Cancula M, Ravnik M, Zumer S. Generation of vector beams with liquid crystal disclination lines. Phys Rev E 2014; 90: 022503.
  27. Carmelo Rosales-Guzmán, Nkosiphile Bhebhe, and Andrew Forbes, Simultaneous generation of multiple vector beams on a single SLM. Opt. Express 2017; 25: 25697-25706.
  28. Gao X-Z, Pan Y, Zhang G-L, Zhao M-D, Ren Z-Ch, Tu Ch-Gh, Li Y-N, Wang H-T. Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields. Photon Res 2017; 5: 640-648. DOI: 10.1364/PRJ.5.000640
  29. Berezny AE, Karpeev SV, Uspleniev GV. Computer-generated holographic optical elements produced by photolithography. Opt Lasers Eng 1991; 15(5): 331-340. DOI: 10.1016/0143-8166(91)90020-T.
  30. Soifer VA, ed. Methods for computer design of diffractive optical elements. New York: John Willey & Sons Inc; 2002. ISBN: 978-0-471-09533-0.
  31. Khonina SN, Koltyar VV, Soifer VA. Techniques for encoding composite diffractive optical elements. Proc SPIE 2003; 5036: 493-498. DOI: 10.1117/12.498521.
  32. Khonina SN, Balalayev SA, Skidanov RV, Kotlyar VV, Paivanranta B, Turunen J. Encoded binary diffractive element to form hyper-geometric laser beams. J Opt A: Pure Appl Opt 2009; 11(6): 065702. DOI: 10.1088/1464-4258/11/6/065702.


© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20