(44-2) 14 * << * >> * Russian * English * Content * All Issues

Object tracking algorithm for a passive positioning system

V.K. Klochko 1, S.A. Smirnov 1

Ryazan State Radio Engineering University, Ryazan, Russia

 PDF, 756 kB

DOI: 10.18287/2412-6179-CO-609

Pages: 244-249.

Full text of article: Russian language.

We propose an algorithm for small-sized mobile object detection and trajectory parameter estimation for a passive positioning system that consists of several optical, thermal, and radio sensors. The algorithm is based on a combination of spatial and temporal processing of observation data. For spatial processing, a set of equations is solved that defines the sufficient condition for coupling the direction vectors to probable objects in the image stereo pair. Object coordinates and velocities for a single observation period are estimated. For temporal processing, the direction vectors are distributed based on connection to probable objects in a sequence of the capture intervals. The results of numerical modeling of the proposed algorithm show the advantage of combining the two approaches in comparison with the traditional object detection and tracking algorithms.

passive positioning system, object detection, trajectory parameters estimation.

Klochko VK, Smirnov SA. Object tracking algorithm for a passive positioning system. Computer Optics 2020; 44(2): 244-249. DOI: 10.18287/2412-6179-CO-609.

This publication has been prepared as a part of research carried out by Ryazan State Radio Engineering University under the state contract 2.7064.2017/BCh.


  1. Bystrov RP, Sokolov AV. Passive radar: Object detection methods [In Russian]. Moscow: “Radiotechnika” Publisher, 2008.
  2. Case EE, Zelnio AM, Rigling BD. Low-cost acoustic array for small UAV detection and tracking. IEEE National Aerospace and Electronics Conference 2008: 110-113. DOI: 10.1109 / NAECON.2008.4806528.
  3. Busset J, et al. Detection and tracking of drones using advanced acoustic cameras. Proc SPIE 2015; 9647: 96470F. DOI: 10.1117/12.2194309.
  4. Moses A, Rutherford MJ, Valavanis KP. Radar-based detection and identification for miniature air vehicles. IEEE International Conference on Control Applications (CCA) 2011: 933-940. DOI: 10.1109/CCA.2011.6044363.
  5. Hoffmann F, et al. Micro-doppler based detection and tracking of UAVs with multistatic radar. IEEE Radar Conference (RadarConf) 2016: 1-6. DOI: 10.1109/RADAR.2016.7485236.
  6. Kovács L, Benedek C. Visual real-time detection, recognition and tracking of ground and airborne targets. Proc SPIE 2011; 7873: 787311. DOI: 10.1117/12.872314.
  7. Muraviev VS, Smirnov SA, Strotov VV. Aerial vehicles detection and recognition for UAV vision system. Computer Optics 2017; 41(4): 545-551. DOI: 10.18287/2412-6179-2017-41-4-545-551.
  8. Katulev A, Kolonskov A, Khramichev A, Yagol’nikov S. Adaptive method and algorithm for detecting low-contrast objects with an optoelectronic device. J Opt Technol 2014; 81(2): 75-82. DOI: 10.1364/JOT.81.000075.
  9. Muraviev VS, Muraviev SI. Adaptive algorithm for the selection and detection of air objects in images [In Russian]. Information and Control 2011; 5: 8-13.
  10. Deshpande SD, et al. Max-mean and max-median filters for detection of small targets. Proc SPIE 1999; 3809: 74-84. DOI: 10.1117/12.364049.
  11. Wang P, Tian JW, Gao CQ. Infrared small target detection using directional highpass filters based on LS-SVM. Electron Lett 2009; 45(3): 156-158. DOI: 10.1049/el:20092206.
  12. Srivastava HB. Image pre-processing algorithms for detection of small/point airborne targets. Defence Science Journal 2009; 59(2): 166-174. DOI: 10.14429/dsj.59.1505.
  13. Laurenzis M, Hengy S, Hommes A, et al. Multi-sensor field trials for detection and tracking of multiple small unmanned aerial vehicles flying at low altitude. Proc SPIE 2017; 10200: 102001A. DOI: 10.1117/12.2261930.
  14. Müller T. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras. Proc SPIE 2017; 10190: 1019018. DOI: 10.1117/12.2262575.
  15. Kim B, et al. V-RBNN based small drone detection in augmented datasets for 3D LADAR system. Sensors 2018; 18(11): 3825. DOI: 10.3390/s18113825.
  16. Hammer M, et al. UAV detection, tracking, and classification by sensor fusion of a 360° lidar system and an alignable classification sensor. Proc SPIE 2019; 11005: – 110050E. DOI: 10.1117/12.2518427.
  17. Gruzman IS, Kirichuk VS, et al. Digital image processing in information systems [In Russian]. Novosibirsk: “Izd. NGTU” Publisher; 2002.
  18. Klochko VK, Gudkov SM. Space-time processing of object images in passive radio systems. Optoelectron Instrument Proc 2018; 54(4): 348-354. DOI: 10.3103/S8756699018040052.
  19. Klochko VK. Detection of moving objects by a passive scanning system. Optoelectron Instrument Proc 2019; 55(1): 59-65. DOI: 10.3103/S8756699019010102.

  20. Razin’kov SN, Sirota AA. Performance in the primary and secondary processing of pulsed radio signals in passive radar systems. Measurement Techniques 2004; 47(2): 193-198. DOI: 10.1023/B:METE.0000026221.30211.d8.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20