(44-3) 01 * << * >> * Russian * English * Content * All Issues

Achievements in the development of plasmonic waveguide sensors for measuring the refractive index
N.L. Kazanskiy 1,2, M.A. Butt 2, S.A. Degtyarev 1,2, S.N. Khonina 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
Molodogvardeyskaya 151, 443001, Samara, Russia,
Samara National Research University, Moskovskoye Shosse 34, 443086, Samara, Russia

 PDF, 4437 kB

DOI: 10.18287/2412-6179-CO-743

Pages: 295-318.

Full text of article: Russian language.

Abstract:
Optical sensors are widely used in the biomedical, chemical and food industries. They provide high sensitivity to changes in the refractive index of the environment due to a specific distribution of resonances across the field. The sensitivity of the sensor is highly dependent on its material and structure. In this review, we focused on the analysis of silicon waveguides as a promising component for optical sensor miniaturization, and plasmon refractive index sensors without fluorescent labeling. We presented the latest developments of special types of plasmon structures, such as metal-insulator-metal waveguides, and their application in refractive index sensors. We analyzed numerous types of plasmon waveguides, their geometry, materials and manufacturing processes, as well as possible energy losses. A discussion of the spectral characteristics of recently proposed refractive index sensors, with an emphasis on their sensitivity and quality indicators, is an important part of the review.

Keywords:
plasmonic waveguides, metal-dielectric-metal structures, Lorentz and Fano resonances, refractive index sensors.

Citation:
Kazanskiy NL, Butt MA, Degtyarev SA, Khonina SN. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index. Computer Optics 2020; 44(3): 295-318. DOI: 10.18287/2412-6179-CO-743.

Acknowledgements:
This work was supported by the Russian Foundation for Basic Research under projects No. 19-17-50131 and by the Ministry of Science and Higher Education within the government project of FSRC “Crystallography and Photonics” RAS under agreement 007-ГЗ/Ч3363/26.

References:

  1. Reed GT, Knights AP. Silicon photonics: The state of the art. Wiley-Interscience; 2008. ISBN: 978-0-470-02579-6.
  2. Alferov ZhI. The semiconductor revolution in the 20th century. Russian Chemical Reviews 2013; 82(7): 587-596. DOI: 10.1070/RC2013v082n07ABEH004403.
  3. Butt MA, Degtyarev SA, Khonina SN, Kazanskiy NL. An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength. J Mod Opt 2017; 64(18). 1892-1897. DOI: 10.1080/09500340.2017.1325947.
  4. Homola J, Yee S, Myszka D. Surface plasmonresonance biosensors. In Book: Ligler FS, Taitt Ch, eds. Optical biosensors: Present and future. Ch 7. Amsterdam: Elsevier; 2002: 207-251. DOI: 10.1016/B978-044450974-1/50007-0.
  5. Butt MA, Khonina SN, Kazanskiy NL. Optical elements based on silicon photonics. Computer Optics 2019; 43(6): 1079-1083. DOI: 10.18287/2412-6179-2019-43-6-1079-1083.
  6. Dong P, et al. Low loss shallow-ridge silicon waveguides. Opt Express 2010; 18(14): 14474-14479. DOI: 10.1364/OE.18.014474.
  7. Penades JS, Ortega-Moñux A, Nedeljkovic M, Wangüemert-Pérez JG, Halir R, Khokhar AZ, Alonso-Ramos C, Qu Z, Molina-Fernández I, Cheben P, Mashanovich GZ. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt Express 2016; 24(20): 22908-22916. DOI: 10.1364/OE.24.022908.
  8. Rickman AG, Reed GT, Namavar F. Silicon-on-insulator optical rib waveguide loss and mode characteristics. J Lightw Technol 1994; 12(10): 1771-1776. DOI: 10.1109/50.337489.
  9. Degtyarev SA, Podlipnov VV, Verma P, Khonina SN. 3D-simulation of silicon micro-ring resonator with Comsol. Proc SPIE 2016; 10224: 102241L. DOI: 10.1117/12.2266783.
  10. Kazanskiy NL, Khonina SN, Butt MA. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys E Low-dimensional Systems and Nanostructures 2020; 117: 113798. DOI: 10.1016/j.physe.2019.113798.
  11. Butt MA, Kozlova ES, Khonina SN. Conditions of a single-mode rib channel waveguide based on dielectric TiO2/SiO2. Computer Optics 2017; 41(4): 494-498. DOI: 10.18287/2412-6179-2017-41-4-494-498.
  12. Egorov AV, Kazanskiy NL, Serafimovich PG. Using coupled photonic crystal cavities for increasing of sensor sensitivity. Computer Optics 2015; 39(2): 158-162. DOI: 10.18287/0134-2452-2015-39-2-158-162.
  13. Butt MA, Khonina SN, Kazanskiy NL. Modelling of Rib channel waveguides based on silicon-on-sapphire at 4.67 µm wavelength for evanescent field gas absorption sensor. Optik 2018; 168: 692-697. DOI: 10.1016/j.ijleo.2018.04.134.
  14. Khonina SN, Kazanskiy NL, Butt MA. Evanescent field ratio enhancement of a modified ridge waveguide structure for methane gas sensing application. IEEE Sensors J 2020; 20. DOI: 10.1109/JSEN.2020.2985840.
  15. Soref RA, Schmidtchen J, Petermann K. Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2. IEEE J Quantum Electron 1991; 27(8): 1971-1974. DOI: 10.1109/3.83406.
  16. Almeida VR, Xu Q, Barrios CA, Lipson M. Guiding and confining light in void nanostructure. Opt Lett 2004; 29(11): 1209-1211. DOI: 10.1364/OL.29.001209.
  17. Wang X, Grist S, Flueckiger J, Jaeger NAF, Chrostowski L. Silicon photonic slot waveguide Bragg gratings and resonators. Opt Express 2013; 21(16): 19029-19039. DOI: 10.1364/OE.21.019029.
  18. Butt MA, Khonina SN, Kazanskiy NL. Numerical analysis of a miniaturized design of a Fabry-Perot resonator based on silicon strip and slot waveguides for bio-sensing applications. J Mod Opt 2019; 66(11): 1172-1178. DOI: 10.1080/09500340.2019.1609613.
  19. Butt MA, Khonina SN, Kazanskiy NL. A serially cascaded micro-ring resonator for simultaneous detection of multiple analytes. Laser Phys 2019; 29(4): 046208. DOI: 10.1088/1555-6611/ab0371.
  20. Butt MA, Khonina SN, Kazanskiy NL. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves in Random and Complex Media 2020; 30(2): 292-299. DOI: 10.1080/17455030.2018.1506191.
  21. Butt MA, Device performance of standard strip, slot and hybrid plasmonic μ-ring resonator: a comparative study / M.A. Butt, S.N. Khonina, N.L. Kazanskiy // Waves in Random and Complex Media. – 2020. – DOI: 10.1080/17455030.2020.1744769.
  22. He X, et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt Express 2018; 26(8): 10109-10118. DOI: 10.1364/OE.26.010109.
  23. Zenin VA, et al. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. Opt Express 2017; 25(11): 12295-12302. DOI: 10.1364/OE.25.012295.
  24. Butt MA, Khonina SN, Kazanskiy NL. Enhancement of evanescent field ratio in a silicon strip waveguide by incorporating a thin metal film. Laser Phys 2019; 29(7): 076202. DOI: 10.1088/1555-6611/ab1414.
  25. Butt MA, Khonina SN, Kazanskiy NL. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sensors J 2020; 20(3): 1355-1362. DOI: 10.1109/JSEN.2019.2944391.
  26. Butt MA, Khonina SN, Kazanskiy NL. Plasmonic refractive index sensor based on metal–insulator–metal waveguides with high sensitivity. J Mod Opt 2019; 66(9): 1038-1043. DOI: 10.1080/09500340.2019.1601272.
  27. Butt MA, Khonina SN, Kazanskiy NL. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 2020; 202: 163655. DOI: 10.1016/j.ijleo.2019.163655.
  28. Kazanskiy NL, Butt MA. Enhancing the sensitivity of a standard plasmonic MIM square ring resonator by incorporating nanodots in the cavity. Photonics Letters of Poland 2020; 12(1): 1-3. DOI: 10.4302/plp.v12i1.902.
  29. Butt MA, Khonina SN, Kazanskiy NL. Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor. J Mod Opt 2019; 66(19): 1920-1925. DOI: 10.1080/09500340.2019.1683633.
  30. Gordon R. Light in a subwavelength slit in a metal: propagation and reflection. Phys Rev B 2006; 73(15): 153405. DOI: 10.1103/PhysRevB.73.153405.
  31. Dionne JA, Sweatlock LA, Atwater HA, Polman A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 2006; 73(3): 035407. DOI: 10.1103/PhysRevB.73.035407.
  32. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 2006; 440(7083): 508-511. DOI: 10.1038/nature04594.
  33. Economou EN. Surface plasmons in thin films. Phys Rev 1969; 182(2): 539-554. DOI: 10.1103/PhysRev.182.539.
  34. Nikolajsen T, Leosson K, Bozhevolnyi SI. Surface plasmonpolariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 2004; 85(24): 5833-5835. DOI: 10.1063/1.1835997.
  35. Charbonneau R, Scales C, Breukelaar I, et al. Passive integrated optics elements based on long-range surface plasmon polaritons. J Lightw Technol 2006; 24(1): 477-494. DOI: 10.1109/JLT.2005.859856.
  36. Degtyarev SA, Porfirev AP, Ustinov AV, Khonina SN. Singular laser beams nanofocusing with dielectric nanostructures: theoretical investigation. J Opt Soc Am B 2016; 33(12): 2480-2485. DOI: 10.1364/JOSAB.33.002480.
  37. Yang R, Lu Z. Subwavelength plasmonic waveguides and plasmonic materials. Int J Opt 2012; 2012: 258013. DOI: 10.1155/2012/258013.
  38. Kamada S, Okamoto T, El-Zohary SE, Haraguchi M. Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt Express 2016; 24(15): 16224-16231. DOI: 10.1364/OE.24.016224.
  39. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR. Silver nanowires as surface plasmon resonators. Phys Rev Lett 2005; 95(25): 257403. DOI: 10.1103/PhysRevLett.95.257403.
  40. Kittel C. Introduction to solid state physics. New York, NY: John Wiley & Sons; 1989. ISBN: 978-0-471-41526-8.
  41. Lide DR. CRC handbook of chemistry and physics. 85th ed. Boca Raton: CRC Press; 2004. ISBN: 978-0-8493-0485-9.
  42. Ordal MA, Bell RJ, Alexander J, Long LL, Querry MR. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, W. Appl Opt 1985, 24(24): 4493-4499. DOI: 10.1364/ao.24.004493.
  43. Kazanskiy NL, Kolpakov VA. Optical materials: Microstructuring surfaces with off-electrode plasma. Boca Raton, FL: CRC Press; 2017. ISBN: 978-1-1381-9728-2.
  44. Masson J-F, Murray-Methot M-P, Live LS. Nanohole arrays in chemical analysis: Manufacturing methods and applications. Analyst 2010; 135(7): 1483-1489. DOI: 10.1039/C0AN00053A.
  45. Donnelly VM, Kornblit A. Plasma etching: Yesterday, today, and tomorrow. J Vacuum Sci Technol A 2013; 31(5): 050825. DOI: 10.1116/1.4819316.
  46. Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens Actuators B Chem 2014; 195: 332-351. DOI: 10.1016/j.snb.2014.01.056.
  47. Dong P, Qian W, Liao S, Liang H, Kung C-C, Feng N-N, Shafiiha R, Fong J, Feng D, Krishnamoorthy AV, Asghari M. Low loss shallow-ridge silicon waveguides. Opt Express 2010; 18(14): 14474-14479. DOI: 10.1364/OE.18.014474.
  48. Butt MA, Khonina SN, Kazanskiy NL. A T-shaped 1 × 8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides. Laser Phys 2019; 29(4): 046207. DOI: 10.1088/1555-6611/ab0372.
  49. Heck MJR, Bauters JF, Davenport ML, Spencer DT, Bowers JE. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photon Rev 2014; 8(5): 667-686. DOI: 10.1002/lpor.201300183.
  50. Butt MA, Khonina SN, Kazanskiy NL. Compact design of a polarization beam splitter based on silicon-on-insulator platform. Laser Phys 2018; 28(11): 116202. DOI: 10.1088/1555-6611/aadf18.
  51. Tran MA, Huang D, Komljenovic T, Peters J, Malik A, Bowers JE. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl Sci 2018; 8: 1139. DOI: 10.3390/app8071139.
  52. Butt MA, Khonina SN, Kazanskiy NL. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor. J Mod Opt 2018; 65(2): 174-178. DOI: 10.1080/09500340.2017.1382596.
  53. Butt MA, Reddy ANK, Khonina SN. A compact design of a balanced 1×4 optical power splitter based on silicon on insulator slot waveguides. Computer Optics 2018; 42(2): 244-247. DOI: 10.18287/2412-6179-2018-42-2-244-247.
  54. Butt MA, Khonina SN, Kazanskiy NL. Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications. Laser Phys 2020; 30(1): 016202. DOI: 10.1088/1555-6611/ab5719.
  55. Maier SA, Barclay PE, Johnson TJ, Friedman MD, Painter O. Low-loss fibre accessible plasmon waveguide for planar energy guiding and sensing. Appl Phys Lett 2004; 84: 3990. DOI: 10.1063/1.1753060.
  56. Bezus EA, Doskolovich LL, Kazanskiy NL, Soifer VA. Scattering in elements of plasmon optics suppressed by two-layer dielectric structures. Techn Phys Lett 2011; 37(12): 1091-1095. DOI: 10.1134/S1063785011120030.
  57. Bezus EA, Doskolovich LL, Kazanskiy NL. Scattering suppression in plasmonic optics using a simple two-layer dielectric structure. Appl Phys Lett 2011; 98(22): 221108. DOI: 10.1063/1.3597620.
  58. Bezus EA, Doskolovich LL, Kazanskiy NL. Insulator-insulator-metal plasmonic waveguide for parasitic scattering suppression in plasmonic optics. Bull Russ Acad Sci Phys 2011; 75(12): 1573-1575. DOI: 10.3103/S1062873811120045.
  59. Maier SA, Friedman MD, Barclay PE, Painter O. Experimental demonstration of fibre-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl Phys Lett 2005; 86: 071103. DOI: 10.1063/1.1862340.
  60. Oulton RF, Bartal G, Pile DFP, Zhang X. Confinement and propagation characteristics of subwavelength plasmonic modes. New J Phys 2008; 10: 105018. DOI: 10.1088/1367-2630/10/10/105018.
  61. Thiel AJ, Frutos AG, Jordan CE, Corn RM, Smith LM. In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal Chem 1997; 69(24): 4948-4956. DOI: 10.1021/ac9708001.
  62. Piliarik M, Vaisocherova H, Homola J. A new surface plasmon resonance sensor for high throughput screening applications. Biosens Bioelectr 2005; 20(10): 2104-2110. DOI: 10.1016/j.bios.2004.09.025.
  63. Cao ZL, Wong SL, Wu SY, Ho HP, Ong HC. High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays. Appl Phys Lett 2014; 104(17): 171116. DOI: 10.1063/1.4875019.
  64. Otto LM, Mohr DA, Johnson TW, Oh SH, Lindquist NC. Polarization interferometry for real-time spectroscopic plasmonic sensing. Nanoscale 2015; 7(9): 4226-4233. DOI: 10.1039/C4NR06586G.
  65. Kravets VG, et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nature Mater 2013; 12: 304-309. DOI: 10.1038/nmat3537.
  66. Homola J, Sinclair S, Gauglitz G. Surface plasmon resonance sensors: Review. Sens Actuators B 1999; 54(1-2): 3-15. DOI: 10.1016/S0925-4005(98)00321-9.
  67. Butt MA, Khonina SN, Kazanskiy NL. Metal-Insulator-Metal nano square ring resonator for gas sensing applications. Wave Random Complex 2019. DOI: 10.1080/17455030.2019.1568609.
  68. Zhang Z, Yang J, He X, Zhang J, Huang J, Chen D, Han Y. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 2018; 18(1): 116. DOI: 10.3390/s18010116.
  69. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Ye H. The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 2014; 22(7): 7669-7677. DOI: 10.1364/OE.22.007669.
  70. Wei W, Zhang X, Ren X. Plasmonic circular resonators for refractive index sensors and filters. Nanoscale Res Lett 2015; 10: 211. DOI: 10.1186/s11671-015-0913-4.
  71. Chen Z, Yu L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photon J 2014; 6(6): 1-8. DOI: 10.1109/JPHOT.2014.2368779.
  72. Gaur S, Zafar R, Somwanshi D. Plasmonic refractive index sensor based on metal insulator metal waveguide, IEEE International conference on recent advances and innovations in engineering (ICRAIE) 2016: 1-4. DOI. 10.1109/ICRAIE.2016.7939557.
  73. Zhang Z, Luo L, Xue C, Zhang W, Yan S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 2016; 16(5): 642. DOI: 10.3390/s16050642.
  74. Yun BF, Hu GH, Zhang RH, Cui YP. Fano resonances in a plasmonic waveguide system composed of stub coupled with a square cavity resonator. J Opt 2016; 18(5): 055002. DOI: 10.1088/2040-8978/18/5/055002.
  75. Yan S, Zhang M, Zhao X, Zhang Y, Wang J, Jin W. Refractive index sensor based on a metal-insulator-metal waveguide coupled with a symmetric structure. Sensors 2017; 17(12): 2879. DOI: 10.3390/s17122879.
  76. Zhao X, Zhang Z, Yan S. Tunable Fano resonance in asymmetric MIM waveguide structure. Sensors 2017; 17(7): 1494. DOI: 10.3390/s17071494.
  77. Butt MA, Khonina SN, Kazanskiy NL. Hybrid plasmonic waveguide-assisted Metal-Insulator-Metal ring resonator for refractive index sensing. J Mod Opt 2018; 65(9): 1135-1140. DOI: 10.1080/09500340.2018.1427290.
  78. Rakhshani MR, Tavousi A, Mansouri-Birjandi MA. Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 2018; 57(27): 7798. DOI: 10.1364/AO.57.007798.
  79. Wang L, Zeng Y-P, Wang Z-Y, Xia X-P, Liang Q-Q. A refractive index sensor based on an analogy T shaped metal-insulator-metal waveguide. Optik 2018; 172: 1199-1204. DOI: 10.1016/j.ijleo.2018.07.093.
  80. Butt MA, Khonina SN, Kazanskiy NL. Plasmonic refractive index sensor based on MIM square ring resonator. International Conference on Computing, Electronic and Electrical Engineering (ICE Cube) 2018. DOI. 10.1109/ICECUBE.2018.8610998.
  81. Fang Y, Wen K, Li Z, Wu B, Chen L, Zhou J, Zhou D. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon J 2019; 11(4): 2914483. DOI: 10.1109/JPHOT.2019.2914483.
  82. Chen Y, Xu Y, Cao J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results in Physics 2019; 14: 102420. DOI: 10.1016/j.rinp.2019.102420.
  83. Yu S, Zhao T, Yu J, Pan D. Tuning multiple Fano resonances for on-chip sensors in a plasmonic system. Sensors 2019; 19(7): 1559. DOI: 10.3390/s19071559.
  84. Asgari S, Granpayeh N. Tunable Mid-Infrared refractive index sensor composed of asymmetric double graphene layers. IEEE Sensors J 2019; 19(14): 5686-5691. DOI: 10.1109/JSEN.2019.2906759.
  85. Shi Y, Zhang G-M, An H-L, Hu N, Gu M-Q. Controllable fano resonance based on coupled square split ring resonance cavity. Acta Photonica Sinica 2017; 46(4): 0413002. DOI: 10.3788/gzxb20174604.0413002.
  86. Zafar R, Salim M. Enhanced figure of merit in fano resonance-based plasmonic. IEEE Sensors J 2015; 15(11): 6313-6317. DOI: 10.1109/JSEN.2015.2455534.
  87. Butt MA, Khonina SN, Kazanskiy NL. A multichannel metallic dual nano-wall square split-ring resonator: design analysis and applications. Laser Phys Lett 2019; 16: 126201. DOI: 10.1088/1612-202X/ab5574.
  88. Kabashin AV, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater 2009; 8(11): 867-871. DOI: 10.1038/nmat2546.
  89. Danaie M, Shahzadi A. Design of a high resolution metal-insulator-metal plasmonic refractive index sensor based on a ring shaped Si resonator. Plasmonics 2019. DOI. 10.1007/s11468-019-00926-9.
  90. Song M, et al. Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 2016; 8(3): 1635-1641. DOI: 10.1039/c5nr06504f.
  91. Cetin AE, Atlug H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 2012; 6(11): 9989-9995. DOI: 10.1021/nn303643w.
  92. Wang Q, Ouyang Z, Sun Y, Lin M, Liu Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular cavity. Nanomaterials 2019: 9(5): 678. DOI: 10.3390/nano9050678.
  93. Ye J, et al. Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS. Nano Lett 2012; 12(3): 1660-1667. DOI: 10.1021/nl3000453.
  94. Liu J, Liu Z, Hu H. Tunable multiple Fano resonance employing polarization-selective excitation of coupled surface-mode and nanoslit antenna resonance in plasmonic nanostructures. Sci Rep 2019; 9: 2414. DOI: 10.1038/s41598-019-38708-2.
  95. Zhan S, Peng Y, He Z, Li B, Chen Z, Xu H, Li H. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci Rep 2016; 6: 22428. DOI: 10.1038/srep22428.
  96. Deng Y, Cao G, Yang H, Li G, Chen X, Lu W. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci Rep 2017; 7: 10639. DOI: 10.1038/s41598-017-10626-1.
  97. Wen Y, et al. High sensitivity and FOM refractive index sensing based on Fano resonance in all-grating racetrack resonators. Opt Commun 2019; 446: 141-146. DOI: 10.1016/j.optcom.2019.04.068.
  98. Chen F, Zhang H, Sun L, Li J, Yu C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt Laser Technol 2019; 116: 293-299. DOI: 10.1016/j.optlastec.2019.03.044.
  99. Eisorbagy MH, et al. Performance improvement of refractometric sensors through hybrid plasmonic Fano resonances. J Lightw Technol 2019; 37(13): 2905-2913. DOI: 10.1109/JLT.2019.2906933.
  100. Liu H, et al. Metasurface generated polarization insensitive Fano resonance for high performance refractive index sensing. Opt Express 2019; 27(9): 13252-13262. DOI: 10.1364/OE.27.013252.
  101. Li Z, et al. Refractive index sensor based on multiple fano resonances in a plasmonic MIM structure. Appl Opt 2019; 58(18): 4878-4883. DOI: 10.1364/AO.58.004878.
  102. Wang M, Zhang M, Wang Y, Zhao R, Yan S. Fano Resonance in an Asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 2019; 19(4): 791. DOI: 10.3390/s19040791.
  103. Zhang BH, Wang L-L, Li H-J, et al. Two kinds of double Fano resonances induced by an asymmetric MIM waveguide structure. J Opt 2016: 18(6): 065001. DOI: 10.1088/2040-8978/18/6/065001.
  104. Chen F, Li J. Refractive index and temperature sensing based on defect resonator coupled with a MIM waveguide. Mod Phys Lett B 2019; 33(3): 1950017. DOI: 10.1142/S0217984919500179.
  105. Qi L, Zhao CL, Yuan JY, Ye MP, Wang J, Zhang Z, Jin S. Highly reflective long period fibre grating sensor and its application in refractive index sensing. Sens Actuators B Chem 2014; 193: 185-189. DOI: 10.1016/j.snb.2013.11.063.
  106. Wu DKC, Kuhlmey BT, Eggleton BJ. Ultrasensitive photonic crystal fibre refractive index sensor. Opt Lett 2009; 34(3): 322-324. DOI: 10.1364/OL.34.000322.
  107. Shen Y, Zhou JH, Liu TR, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 2013; 4(4): 3381. DOI: 10.1038/ncomms3381.
  108. Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 2017; 17: 784. DOI: 10.3390/s17040784.
  109. Akhavan A, Ghafoorifard H, Abdolhosseini S, Habibiyan H. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron 2018; 12(5): 220-227. DOI: 10.1049/iet-opt.2018.0028.
  110. Lu H, Liu X, Mao D. Plasmonic analog of electromagnetically induced transparency in multinanoresonator-coupled waveguide systems. Phys Rev A 2012; 85(5): 053803. DOI: 10.1103/PhysRevA.85.053803.
  111. Boller K, Imamoglu A, Harris SE. Observation of electromagnetically induced transparency. Phys Rev Lett 1991; 66(20): 2593-2596. DOI: 10.1103/PhysRevLett.66.2593.
  112. Chen Y, Chen L, Wen K, Hu Y, Lin W. Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics and Nanostructures – Fundamentals and Applications 2019; 36: 100714. DOI: 10.1016/j.photonics.2019.100714.
  113. Wen K, Chen L, Zhou J, Lei L, Fang Y. A plasmonic chip-scale refractive index sensor design based on multiple Fano resonances. Sensors 2018; 18: 3181. DOI: 10.3390/s18103181.
  114. Berini P. Bulk and surface sensitivities of surface plasmon waveguides. New J Phys 2008; 10(10): 105010. DOI: 10.1088/1367-2630/10/10/105010.
  115. Daviau R, Khan A, Lisicka-Skrzek E, Tait RN, Berini P. Fabrication of surface plasmon waveguides and integrated components on Cytop. Microelectron Eng 2010; 87(10): 1914-1921. DOI: 10.1016/j.mee.2009.11.078.
  116. Krupin O, Asiri H, Wang Ch, Tait RN, Berini P. Biosensing using straight long-range surface plasmon waveguides. Opt Express 2013; 21(1): 698-709. DOI: 10.1364/OE.21.000698.
  117. Hayashi S, Nesterenko DV, and Sekkat Z. Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing. J Phys D Appl Phys 2015; 48(32): 325303. DOI: 10.1088/0022-3727/48/32/325303.
  118. Nesterenko DV, Hayashi S, Sekkat Z. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors. J Opt 2016; 18(6): 065004. DOI: 10.1088/2040-8978/18/6/065004.
  119. Refki S, Hayashi S, Ishitobi H, Nesterenko DV, Rahmouni A, Inouye Y, Sekkat Z. Resolution enhancement of plasmonic sensors by metal–insulator–metal structures. Annalen Der Physik 2018; 530(4): 1700411. DOI: 10.1002/andp.201700411.
  120. COMSOL. Source: <https://www.comsol.com>.
  121. ANSYS. Source: <https://www.ansys.com>.
  122. Lumerical. Source: <https://www.lumerical.com>.
  123. Zand I, Abrishamian MS, Berini P. Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs). Opt Express 2013; 21(1): 79-86. DOI: 10.1364/OE.21.000079.
  124. Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL. A whole blood immunoassay using gold nanoshells. Anal Chem 2003; 75: 2377-2381. DOI: 10.1021/ac0262210.
  125. Guler U, Suslov S, Kildishev AV, Boltasseva A, Shalaev VM. Colloidal plasmonic titanium nitride nanoparticles: Properties and applications. Nanophotonics 2015; 4(3): 269-276. DOI: 10.1515/nanoph-2015-0017.
  126. Behnam MA, Emami F, et al. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photothermal therapy in a melanoma cancer model. Adv Pharm Bull 2018; 8(1): 94-95. DOI: 10.15171/apb.2018.006.
  127. Zand I, Mahigir A, Pakizeh T, Abrishamian. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonantors. Opt Express 2012; 20(7): 7516-7525. DOI: 10.1364/OE.20.007516.
  128. Tao H, et al. Metamaterials on paper as a sensing platform. Adv Mater 2011; 23(28): 3197-3201. DOI: 10.1002/adma.201100163.
  129. Yanik AA, Cetin AE, Huang M, Artar A, Hossein Mousavi S, Khanikaev A, Connor JH, Shvets G, Altug H. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc National Academy of Sciences 2011. DOI: 10.1073/pnas.1101910108.
  130. Hrelescu C, et al. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett 2011; 11(2): 402-407. DOI: 10.1021/nl103007m.
  131. Dondapati SK, et al. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano 2010; 4(11): 6318-6322. DOI: 10.1021/nn100760f.
  132. Unger A, et al. Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids. Nano Lett 2009; 9(6): 2311-2315. DOI: 10.1021/nl900505a.
  133. Shan B., Y. Zhao, Y. Li, H. Wang, R. Chen, M. Li High-quality dual-plasmonic Au@Cu2-xSe nanocrescents with precise Cu2-xSe domain size control and tunable optical properties in the second near-infrared. Chem Mater 2019; 31(23): 9875-9886. DOI: 10.1021/acs.chemmater.9b04100.
  134. Beeram SR, et al. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J Am Chem Soc 2009; 131(33): 11689-11691. DOI: 10.1021/ja904387j.
  135. Feuz L, et al. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano 2010; 4(4): 2167-2177. DOI: 10.1021/nn901457f.
  136. Liu N, et al. Three-dimensional plasmon rulers. Science 2011; 332(6036): 1407-1410. DOI: 10.1126/science.1199958.
  137. Bolduc OR, et al. Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem 2011; 83(21): 8057-8062. DOI: 10.1021/ac2012976.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20