(44-3) 02 * << * >> * Russian * English * Content * All Issues

Hybrid Tamm-cavity modes in photonic crystal with resonant nanocomposite defect layer
S.Ya. Vetrov 1,2, A.Yu. Avdeeva 2, M.V. Pyatnov 2,1, I.V. Timofeev 2,1

Siberian Federal University, 660041, Russia, Krasnoyarsk, pr. Svobodny 79,
Kirensky Institute of Physics, Federal Research Center KSC SB RAS,
660036, Russia, Krasnoyarsk, Akademgorodok 50/38

 PDF, 1007 kB

DOI: 10.18287/2412-6179-CO-637

Pages: 319-324.

Full text of article: English language.

Abstract:
Hybrid optical modes in a one-dimensional photonic crystal with a resonant nanocomposite defect bounded by a metallic layer are studied. The nanocomposite consists of spherical metallic constituents, that are distributed in a dielectric matrix. Transmittance, reflectance, and absorbance spectra of this structure, which is shined by light with normal incidence, are calculated. The possibility of control of the hybrid modes spectral characteristics by changing the thickness of the layer adjacent to the metal, the number of layers, and the nanocomposite filling factor is shown.

Keywords:
photonic crystals, nanocomposite, microcavities, localized modes.

Citation:
Vetrov SYa, Avdeeva AYu, Pyatnov MV, Timofeev IV. Hybrid Tamm-cavity modes in photonic crystal with resonant nanocomposite defect layer. Computer Optics 2020; 44(3): 319-324. DOI: 10.18287/2412-6179-CO-637.

Acknowledgements:
This research was funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund to the research Project No 18-42-243025.

References:

  1. Goto T, Dorofeenko AV, Merzlikin AM, Baryshev AV, Vinogradov AP, Inoue M, Lisyansky AA, Granovsky AB. Optical Tamm states in one-dimensional magnetophotonic structures. Phys Rev Lett 2008; 101: 113902.
  2. Kaliteevski МА, Iorsh I, Brand S, Abram RA, Chamberlain JM, Kavokin AV, Shelykh IA. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 2007; 76: 165415.
  3. Afinogenov BI, Bessonov VO, Soboleva IV and Fedyanin AA. Ultrafast all-optical light control with Tamm plasmons in photonic nanostructures. ACS Photon 2019; 6: 844-850.
  4. Cheng H-C, Kuo C-Y, Hung Y-J, Chen K-P, Jeng S-C. Liquid-crystal active Tamm-plasmon devices. Phys Rev Appl 2018; 9: 064034.
  5. Kaliteevski M, Brand S, Abram RA, Iorsh I, Kavokin AV and Shelykh IA. Hybrid states of Tamm plasmons and exciton polaritons. Appl Phys Lett 2009; 95: 251108.
  6. Pankin PS, Vetrov SYa, Timofeev IV. Tunable hybrid Tamm-microcavity states. J Opt Soc Am B 2017; 34: 2633-2639.
  7. Pyatnov MV, Vetrov SY, Timofeev IV. Tunable hybrid optical modes in a bounded cholesteric liquid crystal with a twist defect. Phys Rev E 2018; 97: 032703.
  8. Afinogenov BI, Bessonov VO, Nikulin AA, Fedyanin AA. Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals. Appl Phys Lett 2013; 103: 061112.
  9. Paulauskas A, Tumenas S, Selskis A, Tolenis T, Valavicius A, Balevicius Z. Hybrid Tamm-surface plasmon polaritons mode for detection of mercury adsorption on 1D photonic crystal/gold nanostructures by total internal reflection ellipsometry. Opt Express 2018; 26: 30400-30408.
  10. Wurdack M, Lundt N, Klaas M, Baumann V, Kavokin AV, Höfling S, Schneider C. Observation of hybrid Tamm-plasmon exciton-polaritons with GaAs quantum wells and a MoSe 2 monolayer. Nat Commun 2017; 8: 259.
  11. Khokhlov NE, Prokopov AR, Shaposhnikov AN, Berzhansky VN, Kozhaev MA, Andreev SN, Ravishankar AP, Achanta VG, Bykov DA, Zvezdin AK, Belotelov VI. Photonic crystals with plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity. J Phys D Appl Phys 2015; 48: 095001. DOI: 10.1088/0022-3727/48/9/095001.
  12. Maji PS, Shukla MK, Das R. Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor. Sens Actuators B Chem 2018; 255: 729-734.
  13. Zhang X, Zhu XS, Shi YW. An optical fiber refractive index sensor based on the hybrid mode of Tamm and surface plasmon Polaritons. Sensor 2018; 18: 2129.
  14. Zhang X-L, Feng J, Han X-C, Liu Y-F, Chen Q-D, Song J-F, Sun H-B. Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica 2015; 2: 579-584.
  15. Geng D, Cabello-Olmo E, Lozano G, Míguez H. Tamm plasmons directionally enhance rare-earth nanophosphor emission. ACS Photon 2019; 6: 634-641.
  16. Mischok A, Siegmund B, Ghosh DS, Benduhn J, Spoltore  D, Böhm M, Fröb H, Körner C, Leo K, Vandewal K. Controlling Tamm plasmons for organic narrowband near-infrared photodetectors. ACS Photon 2017; 4: 2228-2234.
  17. Zhang X-L, Song J-F, Feng J, Sun H-B. Spectral engineering by flexible tunings of optical tamm states and Fabry-Perot cavity resonance. Opt Lett 2013; 38: 4382.
  18. Rahman SKS-U, Klein T, Gutowski J, Klembt S, Sebald K. Tunable Bragg polaritons and nonlinear emission from a hybrid metal-unfolded ZnSe-based microcavity. Sci Rep 2017; 7: 767.
  19. Kaliteevcki MA, Lazarenko AA, Ilinskaya ND, M. Zadiranov YuM, Sasin ME, Zaitsev D, Mazlin VA, Brunkov PN, Pavlov SI, Egorov AYu. Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity. Plasmonics 2015; 38: 281-284.
  20. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater 2010; 9: 205-213.
  21. Sihvola A. Electromagnetic mixing formulae and applications. London: The Institution of Electrical Engineers; 1999.
  22. Markel VA. Introduction to the Maxwell Garnett approximation: tutorial. J Opt Soc Am A 2016; 33: 1244-1256.
  23. Husaini S, Deych L, Menon VM. Plasmon-resonance-induced enhancement of the reflection band in a one-dimensional metal nanocomposite photonic crystal. Opt Lett 2011; 36: 1368-1370.
  24. Vetrov SYa, Avdeeva AYu, Timofeev IV. Spectral properties of a one-dimensional photonic crystal with a resonant defect nanocomposite layer. J Exp Theor Phys 2011; 113: 755-761.
  25. Aly AH, Elsayed HA, Malek C. Optical properties of one-dimensional defective photonic crystal containing nanocomposite material. J Nonlinear Opt Phys 2017; 26(01): 1750007.
  26. Moiseev SG, Ostatochnikov VA. Defect modes of one-dimensional photonic-crystal structure with a resonance nanocomposite layer. Quant Electron 2016: 46(8): 743-748.
  27. Oraevskii AN, Protsenko IE. Optical properties of heterogeneous media. Quant Electron 2001; 31: 252-256.
  28. Sukhov SV. Nanocomposite material with the unit refractive index. Quant Electron 2005; 35: 741-744.
  29. Moiseev SG. Active Maxwell–Garnett composite with the unit refractive index. Physica B 2010; 405: 3042-3045.
  30. Arkhipkin VG, Gunyakov VA, Myslivets SA, Gerasimov VP, Zyryanov VYa, Shabanov VF, Vetrov SYa. One-dimensional photonic crystals with a planar oriented nematic layer: Temperature and angular dependence of the spectra of defect modes. J Exp Theor Phys 2008; 106(2): 388-398.
  31. Klimov V. Nanoplasmonics. Boca Raton, FL: Pan Stanford Publishing; 2014.
  32. Yeh PJ. Electromagnetic propagation in birefringent layered media. J Opt Soc Am 1979; 69: 742-756.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20