(44-4) 01 * << * >> * Russian * English * Content * All Issues

Birth of optical vortices in propagating fields with an original fractional topological charge
V.V. Kotlyar 1,2, A.A. Kovalev 1,2, A.P. Porfirev 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1440 kB

DOI: 10.18287/2412-6179-CO-715

Pages: 493-500.

Full text of article: Russian language.

Abstract:
In contrast to the orbital angular momentum (OAM), which is conserved on free space propagation, the topological charge (TC) of a paraxial optical vortex (OV) is not conserved in the general case. Here, we investigate a Gaussian beam with a fractional TC in the original plane and demonstrate both theoretically and numerically how the TC changes in the course of propagation. Depending on the proximity of the topological charge to an even or odd integer number, an optical vortex with the original fractional TC is shown to behave in a number of different ways. For simple OVs (Laguerre-Gaussian or Bessel-Gaussian modes), TC is conserved both in propagation and after weak phase distortions. An experiment shows that when scattered by a random phase screen, the integer TC of an OV is conserved right up to a random phase variation of π. Therefore, in the case of weak turbulences, it is expedient to measure a discretely varying TC instead of a continuously varying OAM.

Keywords:
optical vortex, fractional topological charge, near-field diffraction, Fresnel diffraction, far-field diffraction.

Citation:
Kotlyar VV, Kovalev AA, Porfirev AP. Birth of optical vortices in propagating fields with an original fractional topological charge. Computer Optics 2020; 44(4): 493-500. DOI: 10.18287/2412-6179-CO-715.

Acknowledgements:
This work was partly funded by the RF Ministry of Science and Higher Education within a government project of FSRC «Crystallography and Photonics» RAS (Introduction and Conclusion), Russian Science Foundation (Project No. 18-19-00595, experiment), and Russian Foundation for Basic Research (Project No. 18-29-20003, theoretical results, and Project No. 18-07-01129, simulation results).

References:

  1. Kotlyar VV, Kovalev AA, Porfirev AP. Vortex laser beams. Boca Raton: CRC Press; 2018. ISBN: 978-1-138-54211-2.
  2. Berry MV. Optical vortices evolving from helicoidal integer and fractional phase steps. J Opt A: Pure Appl Opt 2004; 6(2): 259-268.
  3. Allen L, Beijersbergen M, Spreeuw R, Woerdman J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45(11): 8185.
  4. Soskin MS, Gorshkov VN, Vastnetsov MV, Malos JT, Heckenberg NR. Topological charge and angular momentum of light beams carring optical vortex. Phys Rev A 1997; 56(5): 4064-4075.
  5. Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 2004; 6: 71.
  6. Gotte JB, Franke-Arnold S, Zambrini R, Barnett SM. Quantum formulation of fractional orbital angular momentum. J Mod Opt 2007; 54(12): 1723-1738.
  7. Jesus-Silva AJ, Fonseca EJS, Hickmann JM. Study of the birth of a vortex at Fraunhofer zone. Opt Lett 2012; 37(21): 4552-4554.
  8. Wen J, Wang L, Yang X, Zhang J, Zhu S. Vortex strength and beam propagation factor of fractional vortex beams. Opt Express 2019; 27(4): 5893-5904.
  9. Alexeyev CN, Egorov YuA, Volyar AV. Mutual transformations of fractional-order and integer-order optical vortices. Phys Rev A 2017; 96(6): 063807.
  10. Hickmann JM, Fonseca EJS, Soares WC, Chavez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum. Phys Rev Lett 2010; 105(5): 053904.
  11. Mourka A, Baumgartl J, Shanor C, Dholakia K, Wright EM. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Opt Express 2011; 19(7): 5760-5771.
  12. Kotlyar VV, Kovalev AA, Pofirev AP. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl Opt 2017; 56(14): 4095-4104. DOI: 10.1364/AO.56.004095.
  13. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pasko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 2004; 12(22): 5448-5456.
  14. Watkins RJ, Dai K, White G, Li W, Miller JK, Morgan KS, Jonson EG. Experimental probing of turbulence using a continuous spectrum of asymmetric OAM beams. Opt Express 2020; 28(2): 924-935.
  15. Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005; 22(5): 849-861. DOI: 10.1364/JOSAA.22.000849.
  16. Abramochkin EG, Volostnikov VG. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20