(44-5) 13 * << * >> * Russian * English * Content * All Issues

Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations
A.V. Vorobev 1,2, V.A. Pilipenko 2,3, T.A. Enikeev 1, G.R. Vorobeva 1

Ufa State Aviation Technical University, 450008, Ufa, Russia, K.Marks st. 12,
Geophysical Center of RAS, Moscow, Russia, Molodezhnaya St. 3, 119296,
The Schmidt Institute of Physics of the Earth of RAS, Moscow, Russia, B.Grazhdanskaya St. 10/1, 123242

 PDF, 1837 kB

DOI: 10.18287/2412-6179-CO-707

Pages: 782-790.

Full text of article: Russian language.

Abstract:
The paper is concerned with an approach to developing a specialized web-GIS based on a microservice architecture that provides analytical control of the disturbed component of geomagnetic field variations, according to observation data from magnetic observatories and variational stations published on the SuperMAG portal <http://supermag.jhuapl.edu/>.
     A method of spatial interpolation of geomagnetic data implemented in the proposed web-GIS, together with the proposed scheme for ranking and interpreting them, as well as a visualization method in the form of isolines, allows a user to track the structure, observe the dynamics, identify probable regions, duration and time intervals of the occurrence of extreme geomagnetic disturbances.

Keywords:
geoinformation system, geomagnetic data, geospatial analysis, geostatistics, geomagnetic disturbances.

Citation:
Vorobev AV, Pilipenko VA, Enikeev TA, Vorobeva GR. Geoinformation system for analyzing the dynamics of extreme geomagnetic disturbances from observations of ground stations. Computer Optics 2020; 44(5): 782-790. DOI: 10.18287/2412-6179-CO-707.

Acknowledgements:
This work was financially supported by the Russian Science Foundation (Project No. 17-77-20034), the Russian Foundation for Basic Research (grant No. 20-07-00011-а), and the RF Ministry of Science and Higher Education (government project USATU #FEUE-2020-0007).

References:

  1. Selivanov VN, Barannik MB, Danilin AN, Kolobov VV, Sakharov YaA. Investigation of the influence of geomagnetic disturbances on the harmonic composition of currents in the neutrals of autotransformers [In Russian]. Proc Kola Science Center RAS 2012; 4: 60-68.
  2. Belakhovsky V, Pilipenko V, Engebretson M, Sakharov Ya, Selivanov V. Disturbances of the geomagnetic field as a cause of induced currents of electric power lines. J Space Weather Space Clim 2019;9: A18. DOI: 10.1051/swsc/2019015.
  3. Gvishiani AD, Lukyanova RYu. Assessment of the influence of geomagnetic disturbances on the trajectory of directional drilling of deep wells in the Arctic region. The fundamental basis of innovative technologies in the oil and gas industry. Proceedings of the All-Russian Scientific Conference dedicated to the 30th anniversary of the IPG RAS 2017: 46.
  4. Engebretson MJ, Pilipenko VA, Ahmed LY, Posch JL, Steinmetz ES, Moldwin MB, Connors MG, Weygand JM, Mann IR, Boteler DH, Russell CT, Vorobev AV. Nighttime magnetic perturbation events observed in Arctic Canada: 1. Survey and statistical analysis. J Geophys Res Space Phys 2019; 124(9): 7442-7458. DOI: 10.1029/2019JA026797.
  5. Kozyreva O, Pilipenko V, Sokolova E, Sakharov Ya, Epishkin D. Geomagnetic and telluric field variability as a driver of geomagnetically induced currents. In Book: Yanovskaya TB, Kosterov A, Bobrov NYu, Divin AV, Saraev AK, Zolotova NV, eds. Problems of Geocosmos–2018. Springer proceedings in earth and environmental sciences, eds. Cham, Switzerland: Springer Nature Switzerland AG; 2020: 297-308. DOI: 10.1007/978-3-030-21788-4_26.
  6. Kozyreva O, Pilipenko V, Krasnoperov R, Baddeley L, Sakharov Ya, Dobrovolsky M. Fine structure of substorm and geomagnetically induced currents. Ann Geophys 2019; 63(2): GM219. DOI: 10.4401/ag-8198.
  7. Kozyreva OV, Pilipenko VA, Belakhovsky VB, Sakharov YaA. Ground geomagnetic field and GIC response to March 17, 2015, storm. Earth Planet Space 2018; 70: 157. DOI: 10.1186/s40623-018-0933-2.
  8. Vorobev AV, Vorobeva GR. Geoinformation system for amplitude-frequency analysis of geomagnetic variations and space weather observation data. Computer Optics 2017; 41(6): 963-972. DOI: 10.18287/2412-6179-2017-41-6-963-972.
  9. Kolios S, Vorobev A, Vorobeva G, Stylios C. GIS and environmental monitoring. Applications in the marine, atmospheric and geomagnetic fields. Cham, Switzerland: Springer International Publishing AG; 2017. ISBN: 978-3-319-53084-0.
  10. Gjerloev JW. The SuperMAG data processing technique. J Geophys Res 2012; 117: A09213. DOI: 10.1029/2012JA017683.
  11. Newell PT, Gjerloev JW. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J Geophys Res 2011; 116: A12211. DOI: 10.1029/2011JA016779.
  12. Vorobev AV, Vorobeva GR. Approach to assessment of the relative informational efficiency of intermagnet magnetic observatories. Geomagn Aeron 2018; 58: 625-628. DOI: 10.1134/S0016793218050158.
  13. Tretyk LN. Observation results processing [In Russian]. – Orenburgh: "OGU" Publisher; 2004.
  14. Vorobev AV, Pilipenko VA, Sakharov YaA, Selivanov VN. Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents [In Russian]. Solar-Terrestrial Physics 2019; 5(1): 48-58. DOI: 10.12737/szf-51201905.
  15. Vorobev A, Vorobeva G. Properties and type of latitudinal dependence of statistical distribution of geomagnetic field variations. In Book: Kocharyan G, Lyakhov A, eds. Trigger effects in geosystems. Springer proceedings in earth and environmental sciences. Cham: Springer; 2019: 197-206. DOI: 10.1007/978-3-030-31970-0_22.
  16. Bolshev LN, Smirnov NV. Tables of mathematical statistics [In Russian]. Moscow: "Nauka" Publisher, 1983.
  17. Vorobev AV, Vorobeva GR. Inductive method of geomagnetic data time series recovering. SPIIRAS Proceedings 2018; 2(57): 104-133. DOI: 10.15622/sp.57.5.
  18. Isaaks EH, Mohan R. An introduction to applied geostatistics. Oxford: Oxford University Press; 1989.
  19. Vorobev AV, Vorobeva GR. Correlation analysis of geomagnetic data synchronously recorded by the INTERMAGNET magnetic laboratories. Geomagn Aeron 2018; 58: 178-184. DOI: 10.1134/S0016793218020196.
  20. Kataoka R, Ngwira C. Extreme geomagnetically induced currents. Prog Earth Planet Sci 2016; 3: 23. DOI: 10.1186/s40645-016-0101-x.
  21. Maple C. Geometric design and space planning using the marching squares and marching cube algorithms. Proc 2003 Int Conf on Geometric Modeling and Graphics 2003: 90-95. DOI: 10.1109/GMAG.2003.1219671.
  22. Vorobev AV, Pilipenko VA, Sakharov YaA, Selivanov VN. Statistical properties of the geomagnetic field variations and geomagnetically induced currents. In Book: Yanovskaya TB, Kosterov A, Bobrov NYu, Divin AV, Saraev AK, Zolotova NV, eds. Problems of Geocosmos–2018. Springer proceedings in earth and environmental sciences, eds. Cham, Switzerland: Springer Nature Switzerland AG; 2020: 39-50. DOI: 10.1007/978-3-030-21788-4_5.
  23. Uspensky MI. Basic concepts and ways of influence of geomagnetic storms on the electric power system [In Russian]. Bulletin of the Komi Science Center, Ural Branch of the Russian Academy of Sciences 2017; 1(129): 72-81.
  24. Lakhina G, Alex S, Tsurutani B, Gonzalez W. Research on historical records of geomagnetic storms. Proc Int Astron Union 2004: 3-15. DOI: 10.1017/S1743921305000074.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20