(44-5) 21 * << * >> * Russian * English * Content * All Issues

Optimization of parameters of binary phase axicons for the generation of terahertz vortex surface plasmon polaritons on cylindrical conductors
B.A. Knyazev 1,2, V.S. Pavelyev 1,3,4

Novosibirsk State University, 630090, Russia, Novosibirsk Region, Novosibirsk, Pirogovа St., 1,
Budker Institute of Nuclear Physics, 630090, Russia, Novosibirsk Region, Novosibirsk, Lavrentiev Ave, 11,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 790 kB

DOI: 10.18287/2412-6179-CO-726

Pages: 852-856.

Full text of article: Russian language.

Abstract:
The feasibility of generating surface plasmon polaritons carrying orbital angular momentum ("vortex plasmons") on cylindrical conductors by an end-fire coupling technique in the spectral range from 8.5 to 141 μm (~ 2-40 THz) is considered. The front face of the cylinder is illuminated by Bessel beams formed using binary spiral phase axicons, or annual vortex beams formed in the focal plane of an additional lens. Graphs are constructed that reveal the relationship between the waveguide parameters (conductor diameter, which is equal to the diameter of the illuminating beam, and the “twist” angle of the plasmon) and the axicon parameters (the ratio of the axicon period to the radiation wavelength) for the above wavelengths and topological charges of the beams ranging from 1 to 9. The results obtained indicate the possibility of conducting experiments in the long-wavelength range for modeling a plasmon multiplex communication channel.

Keywords:
surface plasmon-polariton, binary phase axicon, vortex beams.

Citation:
Knyazev BA, Pavelyev VS. Optimization of parameters of binary phase axicons for the generation of terahertz vortex surface plasmons on cylindrical conductors. Computer Optics 2020; 44(5): 852-856. DOI: 10.18287/2412-6179-CO-726.

Acknowledgements:
This work was supported by a grant from the Russian Science Foundation 19-12-00103. In the calculations, results of the experiments performed using the infrastructure of the Shared research facility "Siberian Synchrotron and Terahertz Radiation Center (SSTRC)" based on "NovoFEL" of BINP SB RAS were employed.

References:

  1. Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J. Optical communications using orbital angular momentum beams. Adv Opt Photonics 2015; 7(1): 66-106.
  2. Almazov AA, Khonina SN, Kotlyar VV. Using phase diffraction optical elements to shape and select laser beams consisting of a superposition of an arbitrary number of angular harmonics. J Opt Technol 2005; 72(5): 391-399.
  3. Krenn M, Fickler R, Fink M, Handsteiner J, Malik M, Scheidl T, Ursin R, Zeilinger A. Communication with spatially modulated light through turbulent air across Vienna. New J Phys 2014; 16(11): 113028.
  4. Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys 2012; 14(3): 033001.
  5. Yan Y, Xie G, Lavery MP, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch AF. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun 2014; 5(1): 4876.
  6. Porfirev AP, Kirilenko MS, Khonina SN, Skidanov RV, Soifer VA. Study of propagation of vortex beams in aerosol optical medium. Appl Opt 2017; 56(11): E8-E15.
  7. Khonina SN, Karpeev SV, Paranin VD. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt Lasers Eng 2018; 105: 68-74.
  8. Karpeev SV, Podlipnov VV, Ivliev NA, Paranin VD. Transmission and detection of informationally loaded beams of wavelength 1530 nm in a random fluctuating medium. Computer Optics 2019; 43(3): 368-375. DOI: 10.18287/2412-6179-2019-43-3-368-375.
  9. Knyazev BA, Serbo VG. Beams of photons with nonzero orbital angular momentum projection: new results. Physics-Uspekhi 2018; 61(5): 449-479.
  10. Golub MA, Karpeev SV, Kazanskiy NL, Mirzov AV, Sisakyan IN, Soĭfer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum Electron 1988; 18(3): 392-393. DOI: 10.1070/QE1988v018n03ABEH011528.
  11. Duparre MR, Pavelyev VS, Luedge B, Kley EB, Soifer VA, Kowarschik RM. Generation, superposition, and separation of Gauss-Hermite modes by means of DOEs. Proc SPIE 1998; 3291: 104-114.
  12. Zhang X, Xu Q, Xia L, Li Y, Gu J, Tian Z, Ouyang C, Han J, Zhang W. Terahertz surface plasmonic waves: a review. Advanced Photonics 2020; 2(1): 014001.
  13. Gerasimov VV, Knyazev BA, Kotelnikov IA, Nikitin AK, Cherkassky VS, Kulipanov GN, Zhizhin GN. Surface plasmon polaritons launched using a terahertz free-electron laser: propagation along a gold–ZnS–air interface and decoupling to free waves at the surface edge. J Opt Soc Am B 2013; 30(8): 2182-2190.
  14. Wang K, Mittleman DM. Metal wires for terahertz wave guiding. Nature 2004; 432(7015): 376-379.
  15. Knyazev BA, Kameshkov OE, Nikitin AK, Pavelyev VS, Choporova YuYu. Feasibility of generating surface plasmon polaritons with a given orbital momentum on cylindrical waveguides using diffractive optical elements. Computer Optics 2019; 43(6): 992-1000. DOI: 10.18287/2412-6179-2019-43-6-992-1000.
  16. Fisher C, Botten LC, Poulton CG, McPhedran RC, de Sterke CM. End-fire coupling efficiencies of surface plasmons for silver, gold, and plasmonic nitride compounds. J Opt Soc Am B 2016; 33(6): 1044-1054.
  17. Ustinov AV, Porfir’ev AP, Khonina SN. Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane. J Opt Technol 2017; 84(9): 580-587.
  18. Khonina SN, Porfirev AP, Ustinov AV. Diffractive axicon with tunable fill factor for focal ring splitting. Proc SPIE 2017; 10233: 102331P. DOI: 10.1117/12.2265017.
  19. Khonina SN, Porfirev AP. 3D transformations of light fields in the focal region implemented by diffractive axicons. Applied Physics B 2018; 124(9): 191.
  20. Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2): 023846.
  21. Knyazev BA, Azarov IA, Chesnokov EN, et al. Recent experiments at NovoFEL user stations. EPJ Web of Conferences 2018; 195: 00002. DOI: 10.1051/epjconf/201819500002.
  22. Berry MV, McDonald KT. Exact and geometrical optics energy trajectories in twisted beams. J Opt A: Pure Appl Opt 2008; 10(3): 035005.
  23. TYDEX. THz Waveplates [In Russian]. Source: <http://www.Tydexoptics.com/ru/products/thz_optics/thz_waveplate1/>.
  24. Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett 2013; 38(4): 534-536.
  25. Lösch F, Emde F, Jahnke E. Tables of higher functions. Teubner; 1960.
  26. Kozawa Y, Sato S. Focusing property of a double-ring-shaped radially polarized beam. Opt Lett 2006; 31(6): 820-822.
  27. Karpeev SV, Paranin VD, Khonina SN. Generation of a controlled double-ring-shaped radially polarized spiral laser beam using a combination of a binary axicon with an interference polarizer. J Opt 2017; 19(5): 055701.
  28. Schröter U, Dereux A. Surface plasmon polaritons on metal cylinders with dielectric core. Phys Rev B 2001; 64(12): 125420.
  29. Kotelnikov IA, Kameshkov OE, Knyazev BA. Diffraction of Bessel beams on 2D amplitude gratings—a new branch in the Talbot effect study. J Opt 2020; 22(6): 065603.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20