(45-2) 01 * << * >> * Russian * English * Content * All Issues

Transverse intensity at the tight focus of a second-order cylindrical vector beam
E.S. Kozlova 1,2, S.S. Stafeev 1,2, S.A. Fomchenkov 1,2, V.V. Podlipnov 1,2, V.V. Kotlyar 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1985 kB

DOI: 10.18287/2412-6179-CO-835

Pages: 165-171.

Full text of article: Russian language.

Abstract:
In this paper, an effect of a reverse energy flow at the focus of a second-order cylindrical vector beam which passed through amplitude zone plate was investigated with a scanning near-field optical microscope. A comparison of the intensity distribution detected with a pyramidal metallized cantilever with a hole and the characteristics of the light field calculated using a FDTD method and the Richards-Wolf formulas suggests that the cantilever is sensitive to the transverse intensity component rather than the total intensity or the components of the Poynting vector in the backflow region.

Keywords:
reverse energy flow, vector beam, scanning near-field optical microscopy (SNOM), FDTD method.

Citation:
Kozlova ES, Stafeev SS, Fomchenkov SA, Podlipnov VV, Kotlyar VV. Transverse intensity at the tight focus of a second-order cylindrical vector beam. Computer Optics 2021; 45(2): 165-171. DOI: 10.18287/2412-6179-CO-835.

Acknowledgements:
This work was supported by the RF Ministry of Science and Higher Education under the government project of FSRC "Crystallography and Photonics" RAS ("Introduction" and "Conclusion" Sections), the Russian Science Foundation under project No. 18-19-00595 ("An experiment by means of scanning near-field optical microscopy"), and the Russian Foundation for Basic Research under projects No. 18-07-01380 ("Design and synthesis of a zone plate"), and No. 18-29-20003 ("Numerical modeling by a FDTD method").

References:

  1. Abed J, Alexander F, Taha I, Rajput N, Aubry C, Jouiad M. Investigation of broadband surface plasmon resonance of dewetted Au structures on TiO2 by aperture-probe SNOM and FDTD simulations. Plasmonics 2019; 14(1): 205-218.
  2. Heydarian H, Shahmansouri A, Yazdanfar P, Rashidian B. Dual-color plasmonic probes for improvement of scanning near-field optical microscopy. J Opt Soc Am B 2018; 35(3): 627-635.
  3. Minin IV, Minin OV, Glinskiy IA, Khabibullin RA, Malureanu R, Lavrinenko AV, Yakubovsky DI, Arsenin AV, Volkov VS, Ponomarev DS. Plasmonic nanojet: an experimental demonstration: publisher’s note. Opt Lett 2020; 45(13): 3418.
  4. Werner S, Rudow O, Mihalcea C, Oesterschulze E. Cantilever probes with aperture tips for polarization-sensitive scanning near-field optical microscopy. Appl Phys A 1998; 66(7): S367-S370.
  5. Dvořák P, Édes Z, Kvapil M, Šamořil T, Ligmajer F, Hrtoň M, Kalousek R, Křápek V, Dub P, Spousta J, Varga P, Šikola T. Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state. Opt Express 2017; 25(14): 16560-16573.
  6. González Mora CA, Hartelt M, Bayer D, Aeschlimann M, Ilin EA, Oesterschulze E. Microsphere-based cantilevers for polarization-resolved and femtosecond SNOM. Appl Phys B 2016; 122(4): 86.
  7. Atie EM, Xie Z, El Eter A, Salut R, Nedeljkovic D, Tannous T, Baida FI, Grosjean T. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy. Appl Phys Lett 2015; 106(15): 151104.
  8. El Eter A, Hameed NM, Baida FI, Salut R, Filiatre C, Nedeljkovic D, Atie E, Bole S, Grosjean T. Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip. Opt Express 2014; 22(8): 10072-10080.
  9. Murphy-DuBay N, Wang L, Kinzel EC, Uppuluri SM V., Xu X. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. Opt Express 2008; 16(4): 2584-2589.
  10. Biagioni P, Polli D, Labardi M, Pucci A, Ruggeri G, Cerullo G, Finazzi M, Duò L. Unexpected polarization behavior at the aperture of hollow-pyramid near-field probes. Appl Phys Lett 2005; 87(22): 223112.
  11. Biagioni P, Coduri M, Polli D, Virgili T, Labardi M, Cerullo G, Finazzi M, Duò L. Near-field vs. far-field polarization properties of hollow pyramid SNOM tips. Phys status solidi C 2005; 2(12): 4078-4082.
  12. Shershulin VA, Samoylenko SR, Shenderova OA, Konov VI, Vlasov II. Use of scanning near-field optical microscope with an aperture probe for detection of luminescent nanodiamonds. Laser Phys 2017; 27(2): 025201.
  13. Kotlyar VV, Stafeev SS, Liu Y, O’Faolain L, Kovalev AA. Analysis of the shape of a subwavelength focal spot for the linearly polarized light. Appl Opt 2013; 52(3): 330-339. DOI: 10.1364/AO.52.000330.
  14. Stafeev SS, Kotlyar VV, Nalimov AG, Kozlova ES. The non-vortex inverse propagation of energy in a tightly focused high-order cylindrical vector beam. IEEE Photon J 2019; 11(4): 4500810. DOI: 10.1109/JPHOT.2019.2921669.
  15. Kotlyar VV, Stafeev SS, Nalimov AG. Energy backflow in the focus of a light beam with phase or polarization singularity. Phys Rev A 2019; 99(3): 033840. DOI: 10.1103/PhysRevA.99.033840.
  16. Liu Q, Liu T, Yang S, Wang T, Wang Y. Validation of vectorial theories for the focusing of high numerical aperture Fresnel zone plates. Opt Commun 2018; 429: 119-126.
  17. Minerbi E, Keren-Zur S, Ellenbogen T. Nonlinear metasurface Fresnel zone plates for terahertz generation and manipulation. Nano Lett 2019; 19(9): 6072-6077.
  18. Yoon G, Jang J, Mun J, Nam KT, Rho J. Metasurface zone plate for light manipulation in vectorial regime. Commun Phys 2019; 2(1): 156.
  19. Kotlyar VV, Stafeev SS, Nalimov AG, Kotlyar MV, O’Faolain L, Kozlova ES. Tight focusing of laser light using a chromium Fresnel zone plate. Opt Express 2017; 25(17): 19662-19671. DOI: 10.1364/OE.25.019662.
  20. Mote RG, Minin O V., Minin I V. Focusing behavior of 2-dimensional plasmonic conical zone plate. Opt Quantum Electron 2017; 49(8): 271.
  21. Kim J, Kim H, Lee G-Y, Kim J, Lee B, Jeong Y. Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources. Appl Sci 2018; 8(3): 449.
  22. Yang J, Zhong Y, Zheng C, Ding S, Zang H, Liang E, et al. Dual-type fractal spiral zone plate for generating sequence of square optical vortices. J Opt Soc Am A 2019; 36(5): 893-897.
  23. Zang H, Ding S, Wei L, Wang C, Fan Q, Cao L. Fractal spiral zone plate with high-order harmonics suppression. Appl Opt 2019; 58(31): 8680-8686.
  24. Kozlova ES. Modeling of the optical vortex generation using a silver spiral zone plate. Computer Optics 2018; 42(6): 977-984. DOI: 10.18287/2412-6179-2018-42-6-977-984.
  25. Cheng S, Xia T, Liu M, Zheng C, Zang H, Tao S. Composite spiral zone plate. IEEE Photonics J 2019; 11(1): 1-11.
  26. Kozlova ES. Investigation of the influence of amplitude spiral zone plate parameters on produced energy backflow. Computer Optics 2019; 43(6): 1093-1097. DOI: 10.18287/2412-6179-2019-43-6-1093-1097.
  27. Kim H, Jeong Y. Theoretical and numerical study of cylindrical-vector-mode radiation characteristics in periodic metallic annular slits and their applications. Curr Opt Photonics 2018; 2(5): 482-487.
  28. Kotlyar VV, Nalimov AG. Sharp focusing of vector optical vortices using a metalens. J Opt 2018; 20(7): 075101. DOI: 10.1088/2040-8986/aac4b3.
  29. Richards B, Wolf E. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System. Proc Math Phys Eng Sci 1959; 253(1274): 358-379.spiral zone plate with high-order harmonics suppression. Appl Opt 2019; 58(31):8680-8686.
  30. Kozlova ES. Modeling of the optical vortex generation using a silver spiral zone plate. Comput Opt 2018; 42(6): 977-984.
  31. Cheng S, Xia T, Liu M, Zheng C, Zang H, Tao S. Composite Spiral Zone Plate. IEEE Photonics J 2019; 11(1): 1-11.
  32. Kozlova ES. Investigation of the influence of amplitude spiral zone plate parameters on produced energy backflow. Comput Opt 2019; 43(6): 1093-1097.
  33. Kim H, Jeong Y. Theoretical and numerical study of cylindrical-vector-mode radiation characteristics in periodic metallic annular slits and their applications. Curr Opt Photonics 2018; 2(5): 482–487.
  34. Kotlyar V V., Nalimov AG. Sharp focusing of vector optical vortices using a metalens. J Opt 2018; 20(7): 075101.
  35. Richards B, Wolf E. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System. Proc R Soc A Math Phys Eng Sci 1959; 253(1274): 358-379.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20