(45-2) 08 * << * >> * Russian * English * Content * All Issues

Tunable LiNbO3-based diffractive optical element for the control of transverse modes of a laser beam
A.A. Esin 1, A.R. Akhmatkhanov 1, V.S. Pavelyev 2,3, V.Y. Shur 1

Ural Federal University named after the first President of Russia B.N. Yeltsin,
620000, Ekaterinburg, Russia, Lenina 51,
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34,
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151

 PDF, 962 kB

DOI: 10.18287/2412-6179-CO-786

Pages: 222-226.

Full text of article: Russian language.

Abstract:
A diffractive optical element based on a nonlinear-optical ferroelectric single crystal has been proposed, synthesized, and experimentally characterized. The element allows fast modulation of transverse modes of a Gaussian laser beam.

Keywords:
electro-optical modulator, ferroelectric, lithium niobate, domain structure, transverse mode content.

Citation:
Esin AA, Akhmatkhanov AR, Pavelyev VS, Shur VY. Tunable LiNbO3-based diffractive optical element for the control of transverse modes of the laser beam. Computer Optics 2021; 45(2): 222-226. DOI: 10.18287/2412-6179-CO-786.

Acknowledgements:
The equipment of the Ural Center for Shared Use “Modern nanotechnology” UrFU was used. This work was supported by the Russian Foundation for Basic Research (grant no. 18-29-20077 mk).

References:

  1. Keiser GE. A review of WDM technology and applications. Opt Fiber Technol 1999; 5(1): 3-39. DOI: 10.1006/ofte.1998.0275.
  2. Berdagué S, Facq P. Mode division multiplexing in optical fibers. Appl Opt 1982; 21(11): 1950-1955. DOI: 10.1364/AO.21.001950.
  3. Golub MA, Karpeev SV, Kazanskiĭ NL, Mirzov AV, Sisakyan IN, Soifer VA, Uvarov GV. Spatial phase filters matched to transverse modes. Sov J Quantum Electron 1988; 18(3): 392-393. DOI: 10.1070/QE1988v018n03ABEH011528.
  4. Soifer V. Golub M. Laser beam mode selection by computer generated holograms. Boca Raton: CRC Press, 1994. ISBN: 978-0-8493-2476-5.
  5. Duparre MR, Pavelyev VS, Ludge B, Kley B, Soifer VA, Kowarschik R. Generation, superposition and separation of Gauss-Hermite modes by means of DOEs. Proc SPIE 1998; 3291: 104-114. DOI: 10.1117/12.310573.
  6. Karpeev SV, Podlipnov VV, Algubili AM. An interference scheme for generating inhomogeneously polarized laser radiation using a spatial light modulator. Computer Optics 2020; 44(2): 214-218. DOI: 10.18287/2412-6179-CO-698.
  7. Gavrilov AV, Pavelyev VS. Integrated fiber-based transverse mode converter. Computer Optics 2017; 41(4): 510-514. DOI: 10.18287/2412-6179-2017-41-4-510-514.
  8. Soifer VA, ed. Сomputer design of diffractive optics. Cambridge: Woodhead Publishing Limited; 2012. ISBN: 978-1-84569-635-1.
  9. Karpeyev SV, Pavelyev VS, Duparre M, Luedge B, Rockstuhl C, Schroeter S. DOE-aided analysis and generation of transverse coherent light modes in a stepped-index optical fiber. Optical Memory and Neural Networks (Information Optics) 2003; 12(1): 27-34.
  10. Chayka AN, Amosova LP, Konshina EA. Optycally controlled liquid crystal modulator with 50% diffraction efficiency [In Russian]. Technical Physics Letters 2009; 35(9): 25-30.
  11. Kamanina NV, Shurpo NA, Vasil'ev PJa. Liquid-crystal space-time modulator of light based on complex of polyimidequantum points of row CdSe(ZnS), CdS/ZnS, InP/ZnS for display, television equipment and systems of laser radiation switching. Pat RF of Invent N 2459223 of August 20, 2012, Russian Bull of Inventions N23, 2012.
  12. Rodin VG. A non-coherent holographic correlator based on a digital micromirror device. Computer Optics 2018; 42(3): 347-353. DOI: 10.18287/2412-6179-2018-42-3-347-353
  13. Evtikhiev NN, Zlokazov EYu, Krasnov VV, Rodin VG, Starikov RS, Cheremkhin PA. High-speed implementation of holographic and diffraction elements using digital micromirror devices. Quantum Electronics 2020; 50(7): 667-674. DOI: 10.1070/QEL17295.
  14. Karpeyev SV, Pavelyev VS, Soifer VA, Duparre MR, Ludge B. Experimental study of semiconductor lasers application in optical communication system with a mode compression [In Russian]. Computer Optics 1999; 19: 112-114.
  15. Cudney R, Ríos L, Escamilla H. Electrically controlled Fresnel zone plates made from ring-shaped 180 degrees domains. Opt Express 2004; 12(23): 5783-5788. DOI: 10.1364/opex.12.005783.
  16. Bain AK, Chand P. Ferroelectrics: Principles and applications. Weinhelm: John Wiley & Sons; 2017.
  17. Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Tukmakov KN. Anisotropic diffractive optical element for generating hybrid-polarized beams. Opt Eng 2019; 58(8): 082402. DOI: 10.1117/1.OE.58.8.082402.
  18. Karpeev SV, Podlipnov VV, Khonina SN, Paranin VD, Reshetnikov AS. A four sector polarization converter integrated in a calcite crystal. Computer Optics 2018; 42(3): 401-407. DOI: 10.18287/2412-6179-2018-42-3-401-407
  19. Khonina SN, Ustinov AV, Fomchenkov SA, Porfirev AP. Formation of hybrid higher-order cylindrical vector beams using binary multi-sector phase plates. Sci Rep 2018; 8: 14320. DOI: 10.1038/s41598-018-32469-0.
  20. Khonina SN, Karpeev SV, Alferov SV, Soifer VA. Generation of cylindrical vector beams of high orders using uniaxial crystals. J Opt 2015; 17(6): 065001. DOI: 10.1088/2040-8978/17/6/065001.
  21. Shur VYa, Akhmatkhanov AR, Baturin IS. Micro- and nano-domain engineering in lithium niobate. Appl Phys Rev 2015; 2(4): 040604. DOI: 10.1063/1.4928591.
  22. de Angelis M, de Nicola S, Finizio A, Pierattini G, Ferraro P, Grilli S, Paturzo M, Sansone L, Alfieri D, De Natale P. Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography. Opt Lett 2005; 30(13): 1671-1673. DOI: 10.1364/OL.30.001671.
  23. Das R, Chakraborty R. Enhanced electro-optic property in LiNbO3 by electric field domain inversion. IEEE Photon Technol Lett 2013; 25: 1626-1629. DOI: 10.1109/LPT.2013.2272954.
  24. Ndagano B, Mphuthi N, Milione G, Forbes A. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite–Gaussian modes for free-space optical communication. Opt Lett 2017; 42(20): 4175-4178. DOI: 10.1364/OL.42.004175.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: ko@smr.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20