(45-4) 18 * << * >> * Russian * English * Content * All Issues

Algorithms of multidimensional random process simulation
V.V. Syuzev 1, E.V. Smirnova 1, A.V. Proletarsky 1

Bauman Moscow State Technical University,
105005, Moscow, Russia, 2ndBaumanskaya street, 5/1

 PDF, 1399 kB

DOI: 10.18287/2412-6179-CO-770

Pages: 627-637.

Full text of article: Russian language.

Abstract:
The article discusses two approaches to modeling signals and processes: the method of filter construction and the trigonometric method. It is shown that the later approach is more promising, since an increase in the signal/process representation dimension mathematically means adding a term to the basis function formula, which gives access to fast simulation algorithms. Examples of algorithms for multidimensional simulation of random processes using two methods are given and a software system that implements these algorithms is described. The results provided by the software system will allow you to predict characteristics of engineering projects (accuracy and speed of modeling algorithms). Due to the high relevance of and need for fundamental research of methods and algorithms for digital transformation of the component base, the digitalization of all aspects of activity, including the synthesis of new materials, the development of new methods for designing micro- and nano-systems, the article aims to expand the scope of the spectral method of simulating multidimensional processes using original algorithmic complexes.

Keywords:
random two-dimensional signal, modeling and simulation of signals, basic functions, simulation Fourier series, energy characteristics of signals, power spectral density function, autocorrelation function. software system, ultra-fast information processing.

Citation:
Syuzev VV, Smirnova EV, Proletarsky AV. Algorithms of multidimensional random process simulation. Computer Optics 2021; 45(4): 627-637. DOI: 10.18287/2412-6179-CO-770.

Acknowledgements:
This work was supported by the Russian Federation Ministry of Science and Higher Education under the government project on "Fundamental research of methods of digital transformation of the component base for micro- and nano-systems" (Project # 0705-2020-0041).

References:

  1. Bykov VV. Digital modeling in statistical radio engineering [In Russian]. Moscow: "Sovetskoe Radio: Publisher; 1971.
  2. Toshmurodov YoK, Ergashev GJ, Sayfulloev ShA. Computer-mathematical simulation of electrophysical characteristics of semiconductor coordinate-sensitive detectors of nuclear radiation [In Russian]. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering 2018; 1: 16-20. DOI: 10.18698/0236-3933-2018-1-16-20.
  3. Kolbas YuYu, Kurdubanskaya AI. Employing digital filters in order to decrease random error in laser gyroscope and pendulous accelerometer readings [In Russian]. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering 2018; 2: 27-40. DOI: 10.18698/0236-3933-2018-2-27-40.
  4. Demenkov NP, Matveev VA, Mochalov IA. Fuzzy methods for modeling wave solid-state gyroscopes [In Russian]. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering 2018; 3: 33-50. DOI: 10.18698/0236-3933-2018-3-33-50.
  5. Denisov AV. Simulation of optoelectronic systems for space applications [In Russian]. Journal of Instrument Engineering 2015; 58(11): 882-889. DOI: 10.17586/0021-3454-2015-58-11-882-889.
  6. Astratov OS. Digital simulation of radiosignals [In Russian]. Leningrad: "LIAP" Publisher; 1983.
  7. Krasnov IK, MozjorinaTYu, Balanin AN. Numerical modeling of alloys nanostructure rearrangement by means of molecular dynamics methods [In Russian]. Mat Mod Chisl Met 2017; 4: 3-16.
  8. Arutyunyan RV. Simulation of stochastic filtration processes in lattice systems [In Russian]. Mat Mod Chisl Met 2017; 4: 17-30.
  9. Spitsyn VG, Bolotova YuA, Phan NH, Bui TTT. Using a Haar wavelet transform, principal component analysis and neural networks for OCR in the presence of impulse noise. Computer Optics 2016; 40(2): 249-257. DOI: 10.18287/2412-6179-2016-40-2-249-257.
  10. Drogobutsky A. Economic and mathematical modeling: Textbook for University students [In Russian]. Moscow: "Ekzamen" Publisher; 2006.
  11. Vlasov MP. Economic processes modeling [In Russian]. Moscow: "Fenix" Publisher; 2005.
  12. Berezkin D, Proletarsky A, Sukhorukova N, Kamalov R. Specifics of implementing a hybrid intelligent image georeferencing system. Proc 17th International Conference on Applied Computing 2020: 115-118.
  13. Syuzev VV, Smirnova EV, Kucherov K, Gurenko VV, Khachatrian G. Spectral algorithms for signal generation as learning-methodical tool for engineer preparation. In Book: Smirnova EV, Clark RP, eds. Handbook of Research on Engineering Education in a Global Context. Hershey, PA: IGI Gljbal; 2019: 254-263. DOI: 10.4018/978-1-5225-3395-5.ch023
  14. Jammul SM, Syuzev VV, Andreev AM. Open source software usage in education and research: Network traffic analysis as an example. In Book: Smirnova EV, Clark RP, eds. Handbook of Research on Engineering Education in a Global Context. Hershey, PA: IGI Global; 2019: 331-345. DOI: 10.4018/978-1-5225-3395-5.ch028.
  15. Sotnikov AA. Method of improving efficiency of digital simulation systems for modeling a real time hydro-acoustic situation [In Russian]. Science and Education 2013; 2: 301-310. DOI: 10.7463/0213.0531784.
  16. Kostrov BV, Grinchenko NN, Bayukov KI. Modelling of brightness distribution within video flow of set of landscape images [In Russian]. Izvestiya Tula State University 2015; 9: 70-82.
  17. Syuzev VV, Dodenko IA. Potential application of a highly detailed mathematical model of the target environment in test benches for simulating synthetic-aperture radars [In Russian]. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering 2017; 6: 76-92. DOI: 10.18698/0236.3933.2017.6.76.92.
  18. Kostyashkin LN, Nikiforov MB, eds. Image processing in aeronautical vision systems [In Russian]. Moscow: "Fizmatlit" Publisher; 2016.
  19. Gonzales RC, Woods RE, Eddinc SL. Digital image processing using MATLAB. Upper Saddle River, NJ: Prentice-Hall Inc; 2003.
  20. Maksimov AI, Gashnikov MV. Adaptive interpolation of multidimentional signals for differential compression. Computer Optics 2018; 42(4): 679-687. – DOI: 10.18287/2412-6179-2018-42-4-679-687.
  21. Basarab MA, Konnova NS, Basarab DA, Matsievskiy DD. Digital signal processing of the doppler blood flow meter using the methods of nonlinear dynamics. 2017 Progress In Electromagnetics Research Symposium – Spring (PIERS) 2017: 1715-1720.
  22. Skryl’ S, Sychev M, Sychev A, Mescheryakova T, Ushakova A, Abacharaeva E, Smirnova E. Assessing the response timeliness to threats as an important element of cybersecurity: Theoretical foundations and research model. In Book: Kravets AG, Groumpos PP, Shcherbakov M, Kultsova M, eds. Creativity in intelligent technologies and data science. Cham, Switzerland: Springer Nature Switzerland AG; 2019: 258-269.
  23. Syuzev VV. Principles of digital signals processing [In Russian]. – Moscow: "RTSoft" Publisher; 2014.
  24. Blahut RE. Fast algorithms for digital signal processing. Addison-Wesley Publishing Company; 1985.
  25. Smirnova E, Syuzev V, Samarev R, Deykin I, Proletarsky A. High-dimensional simulation processes in new energy theory: Experimental research (Extended abstract). In Book: Thalheim B, Makhortov S, Sychev A, eds. Data analytics and management in data intensive domains. Extended abstracts of the ХХII International Conference DAМDID/RCDL' 2020. Voronezh: "Voronezh State University" Publisher; 2020: 160-163.
  26. Deykin I. One- and unidirectional two-dimensional signal imitation in complex basis (Extended abstract). In Book: Thalheim B, Makhortov S, Sychev A, eds. Data analytics and management in data intensive domains. Extended abstracts of the ХХII International Conference DAМDID/RCDL' 2020. Voronezh: "Voronezh State University" Publisher; 2020: 229-232.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20