(45-6) 11 * << * >> * Russian * English * Content * All Issues

Formation of an informative index for recognizing specified objects in hyperspectral data
R.A. Paringer 1,2, A.V. Mukhin 1, A.V. Kupriyanov 1,2

Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34,

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151

 PDF, 3882 kB

DOI: 10.18287/2412-6179-CO-930

Pages: 873-878.

Full text of article: Russian language.

Abstract:
The paper is about the development of an approach which able to create rules for distinguish-ing between specified objects of hyperspectral data using a small number of observations. Such an approach would contribute to the development of methods and algorithms for the operational analysis of hyperspectral data. These methods can be used for hyperspectral data preprocessing and labeling. Implementation of the proposed approach are using a technology that harnesses both discriminative criteria and the general formulas of spectral indexes. In implementing the proposed technology, the index was defined with normalized difference formula. The Informativeness was estimated using separability criteria of discriminative analysis. The results show that the implemented algorithm can recognize areas of hyperspectral data with different vegetation. The index formed by the algorithm is similar to Normalized Difference Vegetation Index (NDVI). The proposed technology is the generalization of the approach of forming recognition rules using a small number of features. It has been shown that technology can form informative indexes in specified tasks of hyperspectral data analysis.

Keywords:
classification, hyperspectral data, NDVI, discriminant analysis.

Citation:
Paringer RA, Mukhin AV, Kupriyanov AV. Formation of an informative index for recognizing specified objects in hyperspectral data. Computer Optics 2021; 45(6): 873-878. DOI: 10.18287/2412-6179-CO-930.

Acknowledgements:
The results of the study were obtained as part of the state program of the Ministry of Education and Science of the Russian Federation to Samara University research laboratory #602 "Photonics for Smart House and Smart City" (experiments), partially funded by project no. 0777-2020-0017 (software development and technology), and partially funded by the Russian Foundation for Basic Research under project # 20-51-05008 (theoretical research).

References:

  1. Wu C, Niu Z, Tang Q, Huang W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric For Meteorol 2008; 148(8-9): 1230-1241.
  2. Cho MA, Skidmore A, Corsi F, Van Wieren SE, Sobhan I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Obs Geoinf 2007; 9(4): 414-424.
  3. Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Myneni RB. Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci U S A 2013; 110(3): E185-E192.
  4. Zhang F, Zhou G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecology 2019; 19(1): 18.
  5. Zhang X, Sun Y, Shang K, Zhang L, Wang S. Crop classification based on feature band set construction and object-oriented approach using hyperspectral images. IEEE J Sel Top Appl Earth Obs Remote Sens 2016; 9(9): 4117-4128.
  6. Boori MS, Paringer R, Choudhary K, Kupriyanov A. Supervised and unsupervised classification for obtaining land use/cover classes from hyperspectral and multi-spectral imagery. Proc SPIE 2018; 10773: 107730L. DOI: 10.1117/12.2322624.
  7. Boori MS, Choudhary K, Paringer R, Sharma AK, Kupriyanov A, Corgne S. Monitoring crop phenology using NDVI time series from Sentinel 2 satellite data. 2019 5th Int Conf on Frontiers of Signal Processing (ICFSP) 2019: 62-66. DOI: DOI: 10.1109/ICFSP48124.2019.8938078.
  8. Golhani K, Balasundram SK, Vadamalai G, Pradhan B. A review of neural networks in plant disease detection using hyperspectral data. Inf Process Agric 2018; 5(3): 354-371.
  9. Boori MS, Choudhary K, Paringer R, Kupriyanov A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J Environ Manage 2021; 285: 112138. DOI: 10.1016/j.jenvman.2021.112138.
  10. Pandey P, Ge Y, Stoerger V, Schnable JC. High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Front Plant Sci 2017; 8: 1348.
  11. Holmer A, Tetschke F, Marotz J, Malberg H, Markgraf W, Thiele C, Kulcke A. Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 2016; 37(11): 2064-2078.
  12. Zhang H, Li Y, Jiang Y, Wang P, Shen Q, Shen C. Hyperspectral classification based on lightweight 3-D-CNN with transfer learning. IEEE Trans Geosci Remote Sens 2019; 57(8): 5813-5828.
  13. Zhu L, Chen Y, Ghamisi P, Benediktsson JA. Generative adversarial networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 2018; 56(9): 5046-5063.
  14. Li J, Zhao X, Li Y, Du Q, Xi B, Hu J. Classification of hyperspectral imagery using a new fully convolutional neural network. IEEE Geosci Remote Sens Lett 2018; 15(2): 292-296.
  15. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. Imagenet: A large-scale hierarchical image database. IEEE Conf on Computer Vision and Pattern Recognition 2009: 248-255.
  16. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft COCO: Common objects in context. ECCV 2014: 740-755.
  17. Graña M, Veganzons MA, Ayerdi B. Hyperspectral remote sensing scenes. Source: <http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes>.
  18. Asrar GQ, Fuchs M, Kanemasu ET, Hatfield JL. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron J 1984; 76(2): 300-306.
  19. Fukunaga K. Introduction to statistical pattern recognition. New York, London: Academic Press; 1972.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20