(46-1) 06 * << * >> * Russian * English * Content * All Issues

Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity
V.V. Ivakhnik 1, D.R. Kapizov 1, V.I. Nikonov 1

Samara National Research University, 443086, Russia, Samara, Moscow highway, 34

 PDF, 857 kB

DOI: 10.18287/2412-6179-CO-1011

Pages: 48-55.

Full text of article: Russian language.

Abstract:
For a four-wave radiation converter in a two-dimensional multimode waveguide with thermal nonlinearity at a low reflection coefficient, we analyze the influence of the spatial structure of pump waves on the quality of wavefront reversal. It is shown that the half-width of  modulus of the point spread function of a four-wave radiation converter decreases with decreasing radius of Gaussian pump waves on the waveguide edges, leading to an improvement in the quality of wavefront reversal. For a four-wave radiation converter in a two-dimensional waveguide with infinitely conducting surfaces, we show the presence of "generation" points, near which a sharp increase in the object wave amplitude is observed, with its form completely determined by one of the waveguide modes.

Keywords:
four-wave radiation converter, point spread function, thermal nonlinearity.

Citation:
Ivakhnik VV, Kapizov DR, Nikonov VI. Quality of wavefront reversal for four-wave interaction in a multimode waveguide with thermal nonlinearity. Computer Optics 2022; 46(1): 48-55. DOI: 10.18287/2412-6179-CO-1011.

References:

  1. Dmitriev VG. Nonlinear optics and wavefront reversal [In Russian]. Moscow: "Fizmatlit" Publisher; 2003.
  2. Vysotina NV, Kuprenyuk VI, Ladygin IN, Lazunin KG, Sergeev VV, Smirnov VA, Yur'ev MS. Phase conjugation of millisecond radiation pulses from a pulse-periodic CO2 laser. Quantum Electron 1994; 24(7): 625-628. DOI: 10.1070/QE1994v024n07ABEH000153.
  3. Danehy PM, Paul PH, Farrow RL. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide. J Opt Soc Am B 1995; 12(9): 1564-1576. DOI: 10.1364/JOSAB.12.001564.
  4. Nazemosadat E, Pourbeyram H, Mafi A. Phase matching for spontaneous frequency conversion via four-wave mixing in graded–index multimode optical fibers. J Opt Soc Am B 2016; 33(2): 144-150. DOI: 10.1364/JOSAB.33.000144.
  5. Turitsyn SK, Bednyakova AE, Fedoruk MP, Paperny SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photon 2015; 9(9): 608-614. DOI: 10.1038%2Fnphoton.2015.150.
  6. Weng Y, He X, Wang J, Pan Z. All-optical ultrafast wavelength and mode converter based on intermodal four-wave mixing in few-mode fibers. Opt Commun 2015; 348: 7-12. DOI: 10.1016/j.optcom.2015.03.018.
  7. Anjum OF, Guasoni M, Horak P, Jung Y, Petropoulos P, Richardson DJ, Parmigiani F. Polarization-insensitive four-wave-mixing-based wavelength conversion in few-mode optical fibers. J Lightw Technol 2018; 36(17): 3678-3683. DOI: 10.1109/JLT.2018.2834148.
  8. Zhang H, Bigot-Astruc M, Bigot L, Sillard P, Fatome J. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt Express 2019; 27(11): 15413-15425. DOI: 10.1364/OE.27.015413.
  9. Voronin ES, Petnikova VM, Shuvalov VV. Use of degenerate parametric processes for wavefront correction (review). Sov J Quantum Electron 1981; 11(5): 551-561. DOI: 10.1070/QE1981v011n05ABEH006899.
  10. Ivakhnik VV. Wavefront reversal at four-wave interactions [In Russian]. Samara: “Samara State University” Publisher; 2010.
  11. Ivahnik VV, Nikonov VI, Harskaja TG. Four-wave conversion of radiation by thermal nonlinearity in a fiber with a parabolic profile [In Russian]. Izvestija Vuzov. Priborostroenie 2006; 49(8): 54-60.
  12. Ivahnik VV, Kapizov DR, Nikonov VI. Four-wave interaction in a multimode waveguide with Kerr nonlinearity in a scheme with concurrent pump waves [In Russian]. Physics of Wave Processes and Radio Systems 2019; 22(2): 13-18. DOI: 10.18469/1810-3189.2019.22.2.13-18.
  13. Vorobyeva EV, Ivakhnik VV, Kaurov AV. The spatial characteristics of a four-wave converter of radiation in multimode waveguide with resonant nonlinearity [In Russian]. Physics of Wave Processes and Radio Systems 2018; 21(1): 4-11.
  14. Akimov AA, Ivakhnik VV, Nikonov VI. Four wave interaction on thermal nonlinearity at large reflectance with allowance pumping waves self-diffraction [In Russian]. Computer Optics 2011; 35(2): 250-255.
  15. Marcuse D, ed. Integrated optics. New York: IEEE Press; 1973.
  16. Vorob’eva EV, Ivakhnik VV, Kapizov DR, Nikonov VI. Point spread function of a four-wave radiation converter in a multimode waveguide with Kerr nonlinearity [In Russian]. Physics of Wave Processes and Radio Systems 2021; 24(1): 15-21. DOI: 10.18469/1810-3189.2021.24.1.15-21.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20