(46-1) 07 * << * >> * Russian * English * Content * All Issues

Numerical simulation of the performance of a spaceborne Offner imaging hyperspectrometer in the wave optics approximation
A.A. Rastorguev 1, S.I. Kharitonov 2,3, N.L. Kazanskiy 2,3

Joint Stock Company "Rocket and Space Center "Progress", Samara, Russia;
IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 1068 kB

DOI: 10.18287/2412-6179-CO-1034

Pages: 56-64.

Full text of article: Russian language.

Abstract:
We propose a method for calculating the point scattering function (PSF) of an Offner imaging hyperspectrometer with a diffraction grating in the approximation of scalar diffraction theory. The method consistently takes into account limitations and diffraction of a light beam by elements of the hyperspectrometer system in accordance with the physics of image formation. The PSF of the Offner imaging hyperspectrometer is numerically simulated at various beam parameters and wavelengths. The simulation results are verified using analytical relationships, a geometrical optics approach, as well as a comparison with the related works of other researchers.

Keywords:
Offner's scheme, diffraction grating, wave optics, Kirchhoff integral, hyperspectrometer imaging, spectrometer.

Citation:
Rastorguev AA, Kharitonov SI, Kazanskiy NL. Numerical simulation of the performance of a spaceborne Offner imaging hyperspectrometer in the wave optics approximation. Computer Optics 2022; 46(1): 56-64. DOI: 10.18287/2412-6179-CO-1034.

Acknowledgements:
This work was partly funded by the RF Ministry of Science and Higher Education under a government project of the FSRC “Crystallography and Photonics” RAS (development of mathematical tools for the numerical simulation of the performance of the Offner hyperspectrometer within scalar wave theory) and the Russian Science Foundation under project No 20-69-47110 (modeling the performance of the hyperspectrometer in using the scalar wave theory and verification of the calculation results).

References:

  1. Offner A. New concepts in projection mask aligners. Opt Eng 1975; 14(2): 130-132.
  2. Chrisp MP. Convex diffraction grating imaging spectrometer. U.S. Patent 5,880,834; 1999.
  3. Davis C, Bowles J, Leathers R, Korwan D, Downes TV, Snyder W, Rhea W, Chen W, Fisher J, Bissett P, Reisse RA. Ocean PHILLS hyperspectral imager: design, characterization, and calibration. Opt Express 2002; 10(4): 210-221.
  4. Mouroulis P, Sellar RG, Wilson DW, Shea JJ, Green RO. Optical design of a compact imaging spectrometer for planetary mineralogy. Opt Eng 2007: 46(6): 063001.
  5. Haring RE, Vanstone GC, Nguyen F, Rodil CA. Optomechanical Design of the incubator wide field of view imaging spectrometer. Proc SPIE 2000; 4093. DOI: 10.1117/12.405199.
  6. Lee JH, Kang KI, Park JH. A very compact imaging spectrometer for the micro-satellite STSAT3. Int J Remote Sens 2011; 32(14): 3935-3946.
  7. Mouroulis P, Green RO. Review of high fidelity imaging spectrometer design for remote sensing. Optical Systems Engineering 2018; 54(4): 040901.
  8. Zavarzin VI, Li AV. Methodology for calculating the apparatus function of hyperspectral equipment for remote sensing of the Earth [In Russian]. Bulletin of MSTU Imeni NE Bauman, Ser Instrumentation 2012; Special Issue: 82-89.
  9. Domnenko VM, Bursov MV, Ivanova TV. Modeling the formation of an optical image. Textbook [In Russian]. Saint-Petersburg: "NRU ITMO" Publisher; 2011.
  10. Peisakhson IV. Optics of spectral devices [In Russian]. Leningrad: "Mashinostroenie" Publisher; 1975.
  11. Skokov IV. Optical spectral devices: Textbook [In Russian]. Moscow: "Mashinostroenie" Publisher; 1984.
  12. Tao D, Jia G, Yuan Y, Zhao H. A digital sensor simulator of the pushbroom Offner hyperspectral imaging spectrometer. Sensors 2014; 14: 23822-23842.
  13. Rozhdestvensky DS. Coherence of rays in the formation of an image in a microscope [In Russian]. Journal of Experimental and Theoretical Physics 1940; 10: 305-330.
  14. Kazanskiy NL, Kharitonov SI, Doskolovich LL, Pavelyev AV. Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme. Computer Optics 2015; 39(1): 70-76. DOI: 10.18287/0134-2452-2015-39-1-70-76.
  15. Karpeev SV, Khonina SN, Kharitonov SI. Study of the diffraction grating on a convex surface as a dispersive element. Computer Optics 2015; 39(2): 211-217. DOI: 10.18287/0134-2452-2015-39-2-211-217.
  16. Kazanskiy NL, Kharitonov SI, Karsakov SI, Khonina SN. Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics. Computer Optics 2014; 38(2): 271-280. DOI: 10.18287/0134-2452-2014-38-2-271-280.
  17. Kharitonov SI, Kazanskiy NL, Gornostay AV, Strelkov YuS. Modeling the reflection of electromagnetic waves at diffraction gratings applied on a freeform surfaces. Proc SPIE 2018; 10774: 107740F. DOI: 10.1117/12.2315797.
  18. Kazanskiy N, Ivliev N, Podlipnov V, Skidanov R. An airborne Offner imaging hyperspectrometer with radially-fastened primary elements. Sensors 2020; 20(12): 3411. DOI: 10.3390/s20123411.
  19. Silny JF. Resolution modeling of dispersive imaging spectrometers. Proc SPIE 2016; 9976: 99760A.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20