(46-1) 12 * << * >> * Russian * English * Content * All Issues

Detection of retroreflective objects based on search for spatial anomalies
S.M. Borzov 1, O.I. Potaturkin 1, S.B. Usilov 1

Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences,
630090, Novosibirsk, Russia, Academician Koptyug ave. 1

 PDF, 3083 kB

DOI: 10.18287/2412-6179-CO-929

Pages: 97-102.

Full text of article: Russian language.

Abstract:
This work is devoted to the study of methods for detecting retroreflective objects, including optical and optoelectronic observation devices, based on the search for spatial anomalies in images formed in pulsed laser ranging systems. Algorithms, software and hardware for detecting retroreflective objects have been developed. At the same time, special attention is paid to various ways of forming difference frames with periodic illumination, including with the preliminary replacement of each pixel of the background images by the maximum value for the corresponding neighborhood. The effectiveness of the proposed methods for detecting retroreflective objects exposed to bright sunlight, despite the presence of (mirror and diffuse) reflecting surfaces in the field of view, is demonstrated.

Keywords:
remote detection of retroreflective objects, formation of difference images, search for spatial anomalies, laser ranging.

Citation:
Borzov SM, Potaturkin OI, Usilov SB. Detection of retroreflective objects based on search for spatial anomalies. Computer Optics 2022; 46(1): 97-102. DOI: 10.18287/2412-6179-CO-929.

Acknowledgements:
This work was financially supported by the RF Ministry of Science and Higher Education within the government project No. 121022000116-0 of the IA&E SB RAS.

References:

  1. Fedorov BF. Lasers. Device basics and application [In Russian]. Мoscow: "DOSAAF" Publisher; 1988.
  2. Karasik VE, Orlov VM. Location laser vision systems [In Russian]. Moscow: Publishing House of the Bauman Moscow State Technical University; 2013.
  3. Krymov B, Vladin M, Lender S. Tutorial Adobe Photoshop CS3 [In Russian]. Moscow: "Triumph" Publisher; 2007.
  4. Volkov VG. Night vision devices for detecting glare elements [In Russian]. Specialnaya Tehnika 2004; 2: 2-9.
  5. Golitsyn AA, Seifi NA. Active-pulse method of observation using a CCD photodetector with a lowercase transfer [In Russian]. Izvestiya Vysshih Uchebnih Zavedenii. Priborostroenie 2017; 60(11); 1040-1047.
  6. Alantyev DV, Golitsyn AA, Golitsyn AV, Seifi NA. Stand for the study of the possibility of using matrix photodetectors of the visible range as part of active-pulse observation devices [In Russian]. Opticheskii Journal 2018; 85(6) 53-57.
  7. Golitsyn AA. Hardware-software system for exploring the possibility of application of CCD image sensors as part of gated-viewing systems. Optoelectronics, Instrumentation and Data Processing 2019; 55(5): 513-518.
  8. Bokshansky VB, Vyazov MV, Litvinov IS, et al. Digital processing in optoelectronic systems: textbook [In Russian]. Moscow: Publishing House of the Bauman Moscow State Technical University; 2017.
  9. Bokshansky VB, Karasik VE, Taranov MA. Automatic detection of retroreflectors using laser location systems [In Russian]. Vestnik MGTU Imeni NE Baumana. Seriya Priborostroenie 2011; 83(2): 25-35.
  10. Bokshansky VB, Tevun E, Vyazovih MV, Litvinov IS. The method of selection of the retroreflective objects from the diffuse same with the digital adaptive processing [In Russian]. Engineering Journal: Science and Innovation 2013; 9(21). Source: <http://engjournal.ru/catalog/pribor/optica/910.html>. DOI: 10.18698/2308-6033-2013-9-910.
  11. Chandola V, Banerjee A, Kumar V. Anomaly detection : A survey. ACM Comput Surv 2009; 41(3), 15.
  12. Denisova AYu, Myasnikov VV. Anomaly detection for hyperspectral imaginary. Computer Optics 2014; 38(2): 287-296. DOI: 10.18287/0134-2452-2014-38-2-287-296.
  13. Andriyanov NA, Vasilev KK, Dementev VE. Detection of anomalies on spatially inhomogeneous multi-zone images [In Russian]. Sbornik Trudov III Mezhdunarodnoi Konferencii i Molodejnoi Shkoli «Informacionnie Tehnologii i Nanotehnologii» (ITNT-2017). Samara: "Novaya Tehnika" Publisher; 2017: 529-534.
  14. Andriyanov NA, Gavrilina YuN. Investigation of the algorithm for detecting deterministic anomalies in complex structure images using a doubly stochastic model. Ural Radio Engineering Journal 2020; 4(1): 18-32. DOI: 10.15826/urej.2020.4.1.002.
  15. Borzov SM. Detection of dynamic objects on the basis of space-time anomalies in video sequences. Optoelectronics, Instrumentation and Data Processing 2013; 49(1): 9-13.
  16. Alantiev DV, Borzov SM, Kozik VI, Potaturkin OI, Uzilov SB, Yaminov KR. Experimental study of method of laser pulsed location for retroreflective objects detecting. Optoelectronics, Instrumentation and Data Processing 2021; 56(1): 103-111.
  17. Kirichuk VS, Kosykh VP, Popov SA, Sinel'shchikov VV. Suppression of a quasi-stationary background in a sequence of images by means of interframe processing. Optoelectronics, Instrumentation and Data Processing 2014; 50(2): 109-117.
  18. Myasnikov VV. A local order transform of digital images. Computer Optics 2015; 39(3): 397-405. DOI: 10.18287/0134-2452-2015-39-3-397-405.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20