(46-3) 03 * << * >> * Russian * English * Content * All Issues

Terahertz Bessel and "perfect" vortex beams generated with a binary axicon and axicon with continuous relief
N.D. Osintseva 1,2, V.V. Gerasimov 1,2, B.A. Knyazev 1,2, M.S. Komlenok 3, V.S. Pavelyev 1,4, D.E. Yablokov 5

Novosibirsk State University, 630090, Russia, Novosibirsk, Pirogiva St. 1;
Budker Institute of Nuclear Physics SB RAS, 630090, Russia, Novosibirsk, Lavrentyeva Ave. 11;
Prokhorov General Physics Institute RAS, 119991, Russia, Moscow, Vavilova St. 38;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34;
IntellectSoft, 443096, Samara, Russia, Michurin street 52

 PDF, 1257 kB

DOI: 10.18287/2412-6179-CO-1066

Pages: 375-380.

Full text of article: Russian language.

Abstract:
Comparative studies of characteristics of Bessel and "perfect" vortex beams with a topological charge 9, created using a binary silicon axicon and a "holographic" diamond axicon with continu-ous profile at a wavelength of 141 μm, are carried out. Beams with linear and radial polarization are investigated. An example of the use of a perfect radially polarized beam for the excitation of vortex plasmon-polaritons on a cylindrical conductor is given.

Keywords:
binary diffractive axicon, axicon with continuous relief, terahertz radiation, free electron laser, surface plasmon polaritons.

Citation:
Osintseva ND, Gerasimov VV, Knyazev BA, Komlenok MS, Pavelyev VS, Yablokov DE. Terahertz Bessel and "perfect" vortex beams generated with a binary axicon and axicon with continuous relief. Computer Optics 2022; 46(3): 375-380. DOI: 10.18287/2412-6179-CO-1066.

Acknowledgements:
This work was supported by the Russian Science Foundation (project No. 19-12-00103) on a unique setup "Novosibirsk Free Electron Laser" using equipment from the "Siberian Center of Synchrotron and Terahertz Radiation" The authors are grateful to O.E. Kameshkov and Yu.Yu. Choporova for helpful discussions, the NovoFEL team for continuous support of the experiments and K.N. Tukmakov for fabrication of the binary axicon.

References:

  1. Valyaev AB, Krivoshlykov SG. Mode properties of Bessel beams. Sov J Quantum Electron 198; 19(5): 679-680. DOI: 10.1070/QE1989v019n05ABEH008094.
  2. Khonina SN, Kazanskiy NL, Karpeev SV, Butt MA. Bessel beam: Significance and applications – A progressive review. Micromachines 2020; 11(11): 997. DOI: 10.3390/mi11110997.
  3. Knyazev BA, Serbo VG. Beams of photons with nonzero orbital angular momentum projection: New results. Physics-Uspekhi 2018; 61(5): 449-479. DOI: 10.3367/UFNe.2018.02.038306.
  4. McLeod JH. The axicon: a new type of optical element. J Opt Soc Am 1954; 44(8): 592-597. DOI: 10.1364/JOSA.44.000592.
  5. Durnin J, Miceli JJ Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett 1987; 58(15): 1499-1501. DOI: 10.1103/PhysRevLett.58.1499.
  6. Lin Y, Seka W, Eberly JH, Huang H, Brown, DL. Experimental investigation of Bessel beam characteristics. Appl Opt 1992; 31(15): 2708-2713. DOI: 10.1364/AO.31.002708.
  7. Soifer VA, ed. Diffraction computer optics. Moscow: "Fizmatlit" Publisher; 2007. ISBN: 5-9221-0845-4.
  8. Turunen J, Vasara A, Friberg AT. Holographic generation of diffraction-free beams. Appl Opt 1988; 27(19): 3959-3962. DOI: 10.1364/AO.27.003959.
  9. Soifer VA, ed. Diffractive nanophotonics. Boca Raton: CRC Press; 2014. ISBN: 978-1-4665-9069-4.
  10. Khonina SN, Porfirev AP. 3D transformations of light fields in the focal region implemented by diffractive axicons. Appl Phys B 2018; 124(9): 191. DOI: 10.1007/s00340-018-7060-4.
  11. Khonina SN, Porfirev AP, Volotovskiy SG, Ustinov AV, Fomchenkov SA, Pavelyev VS, Schröter S, Duparré M. Generation of multiple vector optical bottle beams. Photonics 2021; 8(6): 218. DOI: 10.3390/photonics8060218.
  12. Neff JA, Athale RA, Lee SH. Two-dimensional spatial light modulators: a tutorial. Proc IEEE 1990; 78(5): 826-855. DOI: 10.1109/5.53402.
  13. Pavelyev VS, Volodkin BO, Tukmakov KN, Knyazev BA, Choporova YY. Transmissive diffractive microoptics for high-power THz laser radiation. AIP Conf Proc 2018; 1989(1): 020025. DOI: 10.1063/1.5047701.
  14. Shevchenko OA, Vinokurov NA, Arbuzov VS, Chernov KN, Deichuly OI, Dementyev EN, Dovzhenko BA, Getmanov YV, Gorbachev YI, Knyazev BA, et al. The Novosibirsk free electron laser facility. AIP Conf Proc 2020; 2299(1): 020001. DOI: 10.1063/5.0031513.
  15. Wei X, Liu C, Niu L, Zhang Z, Wang K, Yang Z, Liu J. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range. Appl Opt 2015; 54(36): 10641-10649. DOI: 10.1364/AO.54.010641.
  16. Khonina SN, Kotlyar VV, Soifer VA, Shinkaryev MV, Uspleniev GV. Trochoson. Opt Commun 1992; 91(3-4): 158-162. DOI: 10.1016/0030-4018(92)90430-Y.
  17. Choporova YuYu, Knyazev BA, Kulipanov GN, Pavelyev VS, Scheglov MA, Vinokurov NA, Volodkin BO, Zhabin VN. High-power Bessel beams with orbital angular momentum in the terahertz range. Phys Rev A 2017; 96(2): 023846. DOI: 10.1103/PhysRevA.96.023846.
  18. Fedotowsky A, Lehovec K. Optimal filter design for annular imaging. Appl Opt 1974; 13(12): 2919-2923. DOI: 10.1364/AO.13.002919.
  19. Skidanov VE, Ganchevskaya SV. Diffractive optical elements for the formation of combinations of vortex beams in the problem manipulation of microobjects. Computer Optics 2014; 38(1): 65-71. DOI: 10.18287/0134-2452-2014-38-1-65-71.
  20. Arrizón V, Sánchez-de-la-Llave D, Ruiz U, Méndez G. Efficient generation of an arbitrary nondiffracting Bessel beam employing its phase modulation. Opt Lett 2009; 34(9): 1456-1458. DOI: 10.1364/OL.34.001456.
  21. Ostrovsky AS, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt Lett 2013; 38(4): 534-536. DOI: 10.1364/OL.38.000534.
  22. Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt Lett 2015; 40(4): 597-600. DOI: 10.1364/OL.40.000597.
  23. Knyazev BA, Cherkassky VS, Kameshkov OE. “Perfect” terahertz vortex beams formed using diffractive axicons and prospects for excitation of vortex surface plasmon polaritons. Appl Sci 2021; 11(2): 717. DOI: 10.3390/app11020717.
  24. Agafonov AN, Volodkin BO, Kaveev AK, Knyazev BA, Kropotov GI, Pavel’ev VS, Soifer VA, Tukmakov KN, Tsygankova EV, Choporova YuYu. Silicon diffractive optical elements for high-power monochromatic terahertz radiation. Optoelectronics, Instrumentation and Data Processing 2013; 49(2): 189-195. DOI: 10.3103/S875669901302012X.
  25. Ustinov AV, Porfir’ev AP, Khonina SN. Effect of the fill factor of an annular diffraction grating on the energy distribution in the focal plane. J Opt Technol 2017: 84(9): 580-587. DOI: 10.1364/JOT.84.000580.
  26. THz monochromatic wave plates. Source: <http://www.tydexoptics.com/ru/products/thz_optics/thz_waveplate1/>.
  27. Khonina SN, Kharitonov SI, Volotovskiy SG, Soifer VA. Caustics of non-paraxial perfect optical vortices generated by toroidal vortex lenses. Photonics 2021; 8(7): 259. DOI: 10.3390/photonics8070259.
  28. Gerasimov VV, Kameshkov OE, Knyazev BA, Osintseva ND, Pavelyev VS. Vortex surface plasmon polaritons on a cylindrical waveguide: Generation, propagation, and diffraction. J Opt 2021; 23(10): 10LT01. DOI: 10.1088/2040-8986/ac1fc4.
  29. Knyazev BA, Kameshkov OE, Nikitin AK, Pavelyev VS, Choporova YuYu. Feasibility of generating surface plasmon polaritons with a given orbital momentum on cylindrical waveguides using diffractive optical elements. Computer Optics 2019; 43(6): 992-1000. DOI: 10.18287/2412-6179-2019-43-6-992-1000.
  30. Syubaev S, Zhizhchenko A, Vitrik O, Porfirev A, Fomchenkov S, Khonina S, Kuchmizhak A. Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral-shape pulses. Appl Surf Sci 2019; 470: 526-534. DOI: 10.1016/j.apsusc.2018.11.128.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20