(46-3) 05 * << * >> * Russian * English * Content * All Issues

Edge imaging characteristics of aberrated coherent optical systems by edge masking of circular apertures
M. Venkanna 1, K.D. Sagar 2

BVRIT Hyderabad College of Engineering for Women, Hyderabad, India;
Optics Research Group, Department of Physics, Osmania University, Hyderabad, India

 PDF, 694 kB

DOI: 10.18287/2412-6179-CO-940

Pages: 388-394.

Full text of article: English language.

Abstract:
In this paper, attempts have been made to study the joint effects of apodization and aperture masking on the diffraction images of coherently illuminated straight edge. The Edge-Ringing, Edge-Shift and Edge-Eradient of the edge images have been evaluated for different values of apo-dization using edge masking of circular apertures. We have considered rotationally symmetric, ab-errated coherent optical system. These investigations have lead to the use of certain pupil functions in conjunction with optimal apodizers to assess the quality of edge images. Any obstruction placed in the light path of an optical system prevents waves from a portion of the wavefront in reaching the focal zone. This results in the change in the light flux at every point of the diffraction pattern. This is in turn, depends on the shape and size of the obstruction.

Keywords:
amplitude filters, apodization, coherence, defocus, edge image, edge masking, primary spherical aberrations.

Citation:
Venkanna M, Sagar KD. Edge imaging characteristics of aberrated coherent optical systems by edge masking of circular apertures. Computer Optics 2022; 46(3): 388-394. DOI: 10.18287/2412-6179-CO-940.

References:

  1. Hecht E, Zajac A. Optics. 2nd ed. Addison-Wesley, USA; 1978: 422, 496, 497, 512.
  2. Wetherell wb. The calculation of image quality parameters. In Book: Shannon RR, Wyant JC, eds. Applied optics and optical engineering. Vol 8. Ch 6. New York: Academic press; 1980: 173-283.
  3. Papoulis A. Maximum intensity of diffraction patterns and apodization. J Opt Soc Am 1967; 57(3): 362-366. DOI: 10.1364/JOSA.57.000362.
  4. Papoulis A. Systems and transforms with applications in optics. McGraw-Hill Book Company; 1968: 442.
  5. Rao KP, Mondal PK, Seshagiri Rao, T. Coherent imagery of straight edges with Straubel apodisation filters. Optik 1978; 50: 73-81.
  6. Barakat R. Solution of the luneberg apodization problems. J Opt Soc Am 1962; 52(3): 264-275. doi: 10.1364/JOSA.52.000264.
  7. Mills JP, Thompson BJ. Effect of aberrations and apodization on the performance of coherent optical systems. II. Imaging. J Opt Soc Am A 1986; 3(5): 704-716.
  8. Venkanna M, Karuna Sagar D. Reduction in edge-ringing in aberrated images of coherent edge objects by multishaded aperture. Advances in optics 2014; 2014: 963980. DOI: 10.1155/2014/963980.
  9. Venkanna M, Karuna Sagar D. Amplitude filters in shaping the point spread function of optical imaging systems. Proc SPIE 2015; 9654: 96540A. DOI: 10.1117/12.2181610.
  10. Katti PK, Gupta BN. Effect of amplitude filter on the partially space coherent diffraction of a defocused optical system. J Opt Soc Am 1972; 62(1): 41-44.
  11. Tschunko HFA. Apodization and image contrast. Appl Opt 1979; 18(7): 955-956.
  12. Araki T, Asakura T. Coherent apodization problems. Opt Commun 1997; 20(3): 373-377.
  13. Leaver FG, Smith RW. Use of apodization in coherent imaging systems. Optik 1973, 39: 156-160.
  14. Considine PS. Effects of coherence on imaging systems. J Opt Soc Am 1966; 56(8): 1001-1009. DOI: 10.1364/JOSA.56.001001.
  15. Jacquinot P, Roizen-Dossier B. II Apodization. Prog Opt 1964; 3: 29-186. DOI: 10.1016/S0079-6638(08)70570-5.
  16. Siu GG, Cheng L, Chiu DS. Improved side-lobe suppression in asymmetric apodization. J Phys D: Appl Phys 1994; 27(3): 459-463. DOI: 10.1088/0022-3727/27/3/005.
  17. Dowski ER, Cathey WT. Extended depth of field through wavefront coding. Appl Opt 1995; 34(11): 1859-1866. DOI: 10.1364/AO.34.001859.
  18. Pan C, Chen J, Zhang R, Zhuang S. The extension ratio of depth of field by wavefront coding method. Opt Express 2008; 16(17): 13364-13371. DOI: 10.1364/OE.16.013364.
  19. Khonina SN, Ustinov AV. Generalized apodization of an incoherent imaging system aimed for extending the depth of focus. Pattern Recognit Image Anal 2015; 25(4): 626-631. DOI: 10.1134/S1054661815040100.
  20. Dzyuba A, Serafimovich P, Khonina S, Popov S. Application of a neural network for calculating the surface relief of a different level two-zone lens with an increased depth of field. Proc SPIE 2020; 11516: 115161A. DOI: 10.1117/12.2565993.
  21. Khonina SN, Volotovskiy SG, Dzyuba AP, Serafimovich PG, Popov SB, Butt MA. Power phase apodization study on compensation defocusing and chromatic aberration in the imaging system. Electronics 2021; 10(11): 1327. DOI: 10.3390/electronics10111327.
  22. Barakat R. Application of apodization to increase two-point resolution by Sparrow criterion under incoherent illumination. J Opt Soc Am 1962; 52(3): 276-283. DOI: 10.1364/JOSA.52.000276.
  23. Kowalczyk M, Zapata-Rodriguez CJ, Martinez-Corral M. Asymmetric apodization in confocal scanning systems. Appl Opt 1998; 37(35): 8206-8214.
  24. Khonina SN, Ustinov AV. Sharper focal spot for a radially polarized beam using ring aperture with phase jump. J Eng 2013; 2013: 512971. DOI: 10.1155/2013/512971.
  25. Reddy ANK, Sagar DK, Khonina SN. Complex pupil masks for aberrated imaging of closely spaced objects. Opt Spectrosc 2017; 123(6): 940-949. DOI: 10.1134/S0030400X17120189.
  26. Reddy ANK, Khonina SN. Apodization for improving the two-point resolution of coherent optical systems with defect of focus. Appl Phys B 2018; 124(12): 229. DOI: 10.1007/s00340-018-7101-z.
  27. Reddy ANK, Hashemi M, Khonina SN. Apodization of two-dimensional pupils with aberrations. Pramana 2018; 90(6): 77. DOI: 10.1007/s12043-018-1566-5.
  28. Hopkins HH, Zalar B. Aberration tolerances based on line spread function. J Mod Opt 1987; 34(3): 371-406. DOI: 10.1080/09500348714550391.
  29. Sheppard CJR, Choudhury A. Annular pupils, radial polarization, and superresolution. Appl Opt 2004; 43(22): 4322-4327. DOI: 10.1364/AO.43.004322.
  30. Ratnam C, Lakshman Rao V, Goud SL. Comparison of PSF maxima and minima of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems. J Phys D: Appl Phys 2006; 39: 4148-4152. DOI: 10.1088/0022-3727/39/19/005.
  31. Khonina SN, Ustinov AV, Pelevina EA. Analysis of wave aberration influence on reducing the focal spot size in a high-aperture focusing system. J Opt 2011; 13(9): 095702. DOI: 10.1088/2040-8978/13/9/095702.
  32. Khonina SN, Volotovskiy SG. Minimizing the bright/shadow focal spot size with controlled side-lobe in-crease in high-numerical-aperture focusing systems. Adv Opt Technol 2013; 2013: 267684. DOI: 10.1155/2013/267684.
  33. Araki T, Asakura T. Apodized images of coherently illuminated edges in the presence of defocusing and spherical aberration. Optika Aplicata 1978; VIII/4: 159-170.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20