(46-3) 08 * << * >> * Russian * English * Content * All Issues

Structural and optical properties of thin CdTe films in the visible and infrared regions
V.V. Podlipnov 1,2, D.A. Bykov 1,2, D.V. Nesterenko 1,2

IPSI RAS – Branch of the FSRC "Crystallography and Photonics" RAS,
443001, Samara, Russia, Molodogvardeyskaya 151;
Samara National Research University, 443086, Samara, Russia, Moskovskoye Shosse 34

 PDF, 2060 kB

DOI: 10.18287/2412-6179-CO-1042

Pages: 415-421.

Full text of article: Russian language.

Abstract:
CdTe thin films have been deposited by thermal evaporation on heated glass substrates. Structural properties of the CdTe thin films were studied by scanning electron microscopy and Raman spectroscopy. Optical properties were examined by ellipsometry and Fourier spectroscopy. We revealed the low absorption of the synthesized thin films in the infrared (IR) region. We investigated the sensing capability of metal / dielectric / dielectric structures based on a CdTe waveguide layer and gold thick film. The reflectivity spectra of the structures with the water, ethanol, and isopropanol as sensing media exhibit resonance line shapes. The positions of the resonances correspond to those of local maximal values of the solvents absorption. The obtained results can be used for developing the applications of optical resonances in the IR region.

Keywords:
nanophotonics, metal-dielectric structures, resonances, sensing, CdTe thin films, chalcogenide glassy semiconductors, spectroscopy.

Citation:
Podlipnov VV, Bykov DA, Nesterenko DV. Structural and optical properties of thin CdTe films in the visible and infrared regions. Computer Optics 2022; 46(3): 415-421. DOI: 10.18287/2412-6179-CO-1042.

Acknowledgements:
The work was partly funded by the Russian Federation Ministry of Science and Higher Education within a state contract with the "Crystallography and Photonics" Research Center of the RAS under agreement 007-ГЗ/Ч3363/26 (sections 2.1, 2.2) and Russian Foundation for Basic Research under project No. 18-29-20006 (sections 1, 2.3).

References:

  1. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors. Sens Actuators B Chem 1999; 54(1-2): 3-15.
  2. Sokolov VI, Marusin NV, Panchenko VYa, Savel’ev AG, Seminogov VN, Haidukov EV. Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation. Quantum Electron 2013; 43(12):1149-1153.
  3. Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 2010; 9(9): 707.
  4. Hayashi S, Nesterenko DV, Sekkat Z. Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing. J Phys D 2015; 48: 325303. DOI: 10.1088/0022-3727/48/32/325303.
  5. Nesterenko DV, Hayashi S, Sekkat Z. Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors. J Opt 2016; 18(6): 065004. DOI: 10.1088/2040-8978/18/6/065004.
  6. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 2012; 11(1): 69-75.
  7. Ferekides CS, Marinskiy D, Viswanathan V, Tetali B, Palekis V, Selvaraj P, Morel DL. High efficiency CSS CdTe solar cells. Thin Solid Films 2000; 361: 520-526.
  8. Norton P. HgCdTe infrared detectors. Opto-Electron Rev 2002; 10(3): 159.
  9. Günter P, Huignard JP. Photorefractive materials and their applications 2: Materials. New York:  Springer Science+Business Media LLC; 2007.
  10. Zaveryukhin BN, Mirsagatov ShA, Zaveryukhina NN, Volodarskii VV, Zaveryukhina EB. Cadmium telluride thin-film detectors of nuclear radiation. Tech Phys Lett 2003; 29(11): 959-962.
  11. Moutinho HR, Hasoon FS, Abulfotuh F, Kazmerski LL. Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close-spaced sublimation, and sputtering. J Vac Sci Technol A 1995; 13(6): 2877-2883.
  12. Chander S, Dhaka MS. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. Physica E Low Dimens Syst Nanostruct 2015; 73: 35-39.
  13. Moutinho HR, Al-Jassim MM, Levi DH, Dippo PC, Kazmerski LL. Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J Vac Sci Technol A 1998; 16(3): 1251-1257.
  14. Treharne RE, Seymour-Pierce A, Durose K, Hutchings K, Roncallo S, Lane D. Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J Phys Conf Ser 2011; 286: 012038.
  15. Sathyamoorthy R, Narayandass SK, Mangalaraj D. Effect of substrate temperature on the structure and optical properties of CdTe thin film. Sol Energy Mater Sol Cells 2003; 76(3): 339-346.
  16. Milla MJ, Barho F, González-Posada F, Cerutti L, Charlot B, Bomers M, Neubrech F, Tournie E, Taliercio T. Surface-enhanced infrared absorption with si-doped InAsSb/GaSb nano-antennas. Opt Express 2017; 25: 26651-26661.
  17. Barho FB, Gonzalez-Posada F, Milla M.-J, Bomers M, Cerutti L, Tournie E, Taliercio T, Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin. Nanophotonics 2017; 7: 507-516.
  18. Kazanskiy NL, Kolpakov VA, Krichevskiy SV, Podlipnov VV. Simulations of dynamic resistive evaporation in a vacuum. Tech Phys 2017; 62(10): 1490-1495. DOI: 10.1134/S1063784217100140.
  19. Belas EM, Bugar RG, Franc J, Moravec P, Hlidek P, Höschl P. Reduction of inclusions in (CdZn) Te and CdTe: In single crystals by post-growth annealing. J Electron Mater 2008; 37(9): 1212-1218.
  20. Artamonov VV, Baidullaeva A, Vlasenko AI, Vuichik NV, Lytvyn OS, Mozol’ PE, Strel’chuk VV. Atomic-force microscopy and Raman scattering studies of laser-induced structural disordering on the p-CdTe surface. Phys Solid State 2004; 46(8): 1533-1537.
  21. Brus VV, Solovan MN, Maistruk EV, Kozyarskii IP, Maryanchuk PD, Ulyanytsky KS, Rappich J. Specific features of the optical and electrical properties of polycrystalline CdTe films grown by the thermal evaporation method. Phys Solid State 2014; 56(10): 1947-1951.
  22. Vinogradov VS, Karczewski G, Kucherenko IV, Mel’nik NN, Fernandez P. Raman spectra of structures with CdTe-, ZnTe- and CdSe-Based quantum dots and their relation to the fabrication technology. Phys Solid State 2008; 50(1): 164-167.
  23. Amirtharaj PM, Pollack FH. Raman scattering study of the properties and removal of excess Te on CdTe surfaces. Appl Phys Lett 1984; 45(7): 789-791.
  24. Brajesh K, Rai HD, Bist RS, Katiyar K-T, Chen A, Burger J. Controlled micro oxidation of CdTe surface by laser irradiation: а micro-spectroscopic study. Appl Phys 1996; 80: 477-481.
  25. Fabry C, Pérot A. Théorie et applications d’une nouvelle méthode de spectroscopie interférentielle. Ann de Chim et de Phys 1899; 16(7): 115-144.
  26. Song GH. Mathematical modeling of Fabry–Perot resonators: I. Complex-variable analysis by uniformly convergent partial-fraction expansion. J Opt Soc Am A 2014; 31(2): 404-410.
  27. Ismail N, Kores CC, Geskus D, Pollnau M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency dependent reflectivity. Opt Express 2016; 24(15): 16366-16389.
  28. Nesterenko DV, Sekkat Z. Resolution estimation of the Au, Ag, Cu, and Al single and double layer surface plasmon sensors in the ultraviolet, visible, and infrared regions. Plasmonics 2013; 8(4): 1585-1595. DOI: 10.1007/s11468-013-9575-1.
  29. Nesterenko DV, Pavelkin RA, Hayashi S. Estimation of resonance characteristics of single-layer surface-plasmon sensors in liquid solutions using Fano’s approximation in the visible and infrared regions. Computer Optics 2019; 43(4): 596-604. DOI: 10.18287/2412-6179-2019-43-4-596-604.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20