Modelling of multilayer dielectric filters based on TiO2/SiO2 and TiO2/MgF2 for flourescence microscopy imaging
M.A. Butt, S. A. Fomchenkov, A. Ullah, M. Habib, R. Z. Ali

 

Samara National Research University, Samara, Russia,
Image Processing Systems Institute оf the RAS – Branch of the FSRC “Crystallography and Photonics” RAS, Samara, Russia,
Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan

Full text of article: English language.

 PDF

Abstract:
We report a design for creating multilayer dielectric optical filters based on TiO2 and SiO2/MgF2 alternating layers. We have selected Titanium dioxide (TiO2) for high refractive index (2.5), Silicon dioxide (SiO2) and Magnesium fluoride (MgF2) as a low refractive index layer (1.45 and 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Re-flectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high re-flectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer. Therefore, bandpass filters are required to restrict the wavelength outside the stopband of the FP DBRs. The proposed filter shows high quality with an average transmission of 97 % within the passbands and the transmission outside the passband is around 3 %. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptionally promising for florescence imaging and narrow-band imaging endoscopy.

Keywords:
Fabry-Perot filter, fluorescence microscopy, dielectric multilayers.

Citation:
Butt MA, Fomchenkov SA, Ullah A, Habib M, Ali RZ. Modelling of multilayer dielectric filters based on TiO2 / SiO2 and TiO2 / MgF2 for fluorescence microscopy imaging. Computer Optics 2016; 40(5): 674-678. DOI: 10.18287/2412-6179-2016-40-5-674-678.

References:

  1. Macleod HA. Thin-film optical filters. Boca Raton, FL: CRC Press; 2010. ISBN 978-1-4200-7302-7.
  2. Kazanskiy NL, Serafimovich PG, Khonina SN. Harnessing the guided-mode resonance to design nanooptical transmission spectral filters. Optical Memory and Neural Networks (Information Optics) 2010; 19(4), 318-324.
  3. Kazanskiy NL, Kharitonov SI, Khonina SN, Volotovskiy SG. Simulation of spectral filters used in hyperspectrometer by decomposition on vector Bessel modes. Proc of SPIE 2015; 9533, 95330L. DOI: 10.1117/12.2183429.
  4. Asghar MH, Khan MB, Naseem S. Modeling thin film multilayer broad-band-pass filters in visible spectrum. Czechoslovak Journal of Physics 2003; 53(12): 1209-1217. DOI: 10.1023/B:CJOP.0000010585.26194.eb.
  5. Ramanujam N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2000; 2(1-2): 89-117.
  6. Grazyna P, Zhiqian D, Marcin G, Jennifer JH, David RW, Nathan SA, Kryzsztof P. Noninvasive two-photon fluorescence microscopy imaging of mouse retina and RPE through the pupil of the eye. Nature Medicine 2014; 20(7): 785-789. DOI: 10.1038/nm.3590.
  7. Spiess E, Bestvater F, Heckel-Pompey A, Toth K, Hacker M, Stobrawa G, Feurer T, Wotzlaw C, Berchner-Pfannschmidt U, Porwol T, Acker T, Microsc J. Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. J Microsc 2005; 217(3): 200-204. DOI: 10.1111/j.1365-2818.2005.01437.x.
  8. Larouche S, Martinu L. OpenFilters: open-source software for the design, optimization, and synthesis of optical filters. Appl Opt 2008: 47(13): C219-C230.
  9. Asghar MH, Shoaib M, Placido F, Naseem S. Wide bandpass optical filters with TiO2 and Ta2O5. Central European Journal of Physics 2008; 6(4): 853-863. DOI: 10.2478/s11534-008-0104-3.
  10. Asghar MH, Shoaib M, Khan ZM, Placido F, Naseem S, Mehmood M. Complex optical filter prepared by sputter deposition. Eur Phys J Appl Phys 2010; 49(2): 20501. DOI: 10.1051/epjap/2009205.
  11. Habib M, Ullah A. Simulation of Near Infrared  Interference Bandpass Filters for Spectropcscopic Applications. International conference on Computing, Electronic and Electrical Engineering 2016: 234-238. DOI: 10.1109/ICECUBE.2016.7495230.

© 2009, IPSI RAS
Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS, Russia, 443001, Samara, Molodogvardeyskaya Street 151; E-mail: journal@computeroptics.ru; Phones: +7 (846) 332-56-22, Fax: +7 (846) 332-56-20