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Abstract 
Laser light modes are beams in whose cross-section the complex amplitude is described by eigenfunctions of the 

operator of light propagation in the waveguide medium. The fundamental properties of modes are their orthogonality 
and their ability to retain their structure during propagation for example in a lenslike medium, in free space or a Fourier 
stage. Novel Diffractive Optical Elements (DOEs) of MODAN-type [1] open up new promising potentialities of solv-
ing the tasks of generation, transformation, superposition and subsequent separation again of different laser modes. 
Now we present new results obtained by synthesis and investigation of beams consisting of more than one two-
dimensional Gaussian laser modes with the same value of propagation constant (invariant multimode beams) formed by 
DOEs. The exploitation of these phenomena could enhance the fiber optical system transfer capacity without pulse 
enlargement.

1. Introduction 
Laser light modes are beams in whose cross-section 

the complex amplitude is described by eigenfunctions of 
the operator of light propagation in the waveguide me-
dium. The fundamental properties of modes are the 
property of retaining their structure and orthogonality 
during the propagation in a waveguide medium (for ex-
ample free space or lens-like waveguide). Novel Dif-
fractive Optical Elements (DOEs) of MODAN-type [1] 
open up new promising possibilities of solving the tasks 
of generation, transformation, superposition and subse-
quent separation again of different laser modes. In [2,3] 
we presented a MODAN, capable to transform a Gaus-
sian (0,0) input beam into an unimodal Gauss-Hermite 
GH(1,0) complex amplitude distribution with high effi-
ciency. Now we present new results, obtained by syn-
thesis and investigation of beams, consisting of more 
than one transversal laser modes with the same value of 
propagation constant (invariant beams) and formed by 
DOEs. It's important to note, that invariant beams, ex-
cited by phase DOEs with high efficiency, can be used 
for optical communication purposes because of the ab-
sence of pulse enlargement phenomena [4,5]. We pre-
sent theoretical as well as first experimental investiga-
tions of invariant beam propagation through Fourier 
stage and in the free-space. The results demonstrate 
promising perspectives for the selected concept in fu-
ture. 

2. Basic formalism 
Let us define modes as light beams, which repro-

duce themselves during their propagation in a 
waveguide medium. Modal beams do not change their 
spatial structure in a proper waveguide medium. Every 
mode gets its own attenuation and its own phase delay, 
proportional to the optical path length and to the propa-
gation constant. Thus, in the case of a graded-index op-
tical fiber, the phase delay is continuously accumulated 
during the mode propagation. Furthermore, in this case 
guided modes reproduce their modal configuration after 
each path of sufficient length in the fiber. In this para-
graph we discuss the mode properties, which are essen-
tial with respect to computer generation of optical ele-
ments matched to modes' complex amplitudes (MO-

DANs). Let us set the Cartesian coordinates 
),(),,( zzyx x=  in the medium of beam propagation. 

The two-dimensional vector ),( yx=x  represents the 
transverse coordinates; z  is the longitudinal coordinate 
along the optical axis. Guided modes under considera-
tion are thought as located within the domain G∈x  in 
the beam cross-section. We use the scalar representation 
of light field and the scalar diffraction theory without 
any consideration of polarization effects [4]. Thus, we 
describe the monochromatic or quasi-monochromatic 
field by the complex amplitude ),( zw x  with wave-
length λ or wavenumber k. Besides, by default we will 
suggest that waveguide medium (gradient index 
waveguide or free space) under consideration has a 
translation invariant feature, e.g. its characteristics do 
not change along the z - axis. Let's consider the Helm-
holtz equation for gradient index medium description 
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ferential Hamiltonian operator. If finite diameter of 
waveguide is taken into account, then certain additional 
boundary conditions appear at the interface between 
core and cladding. According to [6], the modes of a 
graded-index optical fiber (Fig. 1) have a plane wave-
front and obey equation  

( ) ( )[ ] ( ) 0,,, 2222 =⋅−+∇⊥ yxyxnkyx plplpl ψβψ .  (2) 

For any given distance z we have 
( ) ( )yxzyxw plpl ,,, ψγ ⋅= ,     (3) 

( )[ ]zi plplpl ⋅+= αβγ exp   (4) 

where lpβ  is the propagation constant and lpα  is the 

coefficient of attenuation for the mode lpψ . Thus, the 

modes of graded-index optical fiber satisfy the eigen-
value equation (2) for any distance z  passed by light. 
Eigenvalues are specified by Eq. (4). It must be noted, 
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that Eq. (3) describes the modal self-reproduction, that 
occurs with a constant scale regarding the Cartesian co-
ordinates (x,y). For the propagation in a fiber with quad-
ratic refractive index described in the form 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∆−=

2

2
2
1

2 21)(
a
rnrn ,  (5) 

we have 
)exp()( ziz plpl βγ = ,  (6) 

 
Fig. 1: Modes in a graded-index optical fiber with 

parabolic profile 
Gauss-Laguerre- and Gauss-Hermite modes are ei-

genfunctions of the propagation operator in a 
waveguide medium with parabolic profile according to 
Eq. (5). 

In polar coordinate system we obtain as solutions of 
the Helmholtz equation the well-known formulae for 
the complex amplitude of Gauss-Laguerre modes de-
scribed in [1] 
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where α  is the polar angle of the vector ( )yx,  with an 

absolute 22 yxr += , l
pL  are the generalized 

Laguerre polynoms with ,...2,1,0, =lp  described in [8]. 
Here 
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is the normalizing constant. In some cases, the modes in 
Eq. (7) are written in a real form including )sin( αl  and 

)cos( αl  instead of )exp( αil± . As solutions of the 
Helmholtz equation for a waveguide with parabolic pro-
file in the Cartesian coordinate system we obtain the 
well-known formulae for the complex amplitude of 
Gauss-Hermite “GH” modes described in [7], 
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where ( ).pH - is the Hermite polynom of p th order, 

σ is the mode fundamental radius and  
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 is a normalization constant again. The propagation con-
stant β pl for Gaussian modes [1] is 
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where the two-dimensional integral mode number fol-
lows rpl = p+l for Gauss-Hermite- and rpl = 2p+l for 
Gauss-Laguerre modes, respectively. Let us summarize 
the well-known mode fundamental features [1]. Being 
natural (normal) or eigen-oscillations, the modes of a 
waveguide may be characterized by the following in-
variant and optimal properties: 
1. Each waveguide medium can be characterized by a 

discrete set ( ){ }yxpl ,ψ  of its eigen-oscillations - 

modes.  
2. Modes are the unique two-dimensional base-

functions that conserve the orthogonality during 
guided propagation in their native waveguide me-
dia. 

3. Modes are the unique two-dimensional base-
functions that conserve amplitude-phase structure 
during guided propagation in their native 
waveguide media. 

4. Gaussian mode beams manifest a remarkable 
property of conservation of their type, while propa-
gating not only in free-space but through lenses 
too. According to [7] Gaussian modes propagating 
through an optical Fourier-stage with the focal 
length 0f , change their parameters 
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Phase of the beam changes in this case by the fol-
lowing value: 
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Note, that for two-dimensional waveguide cross-
section the same particular value of propagation con-
stant set { }plβ  can correspond to more than one differ-

ent modal functions: It is easy to see that two Gauss-
Hermite modes with numbers (p,l ) and (l,p ) will have 
the same value lprpl += .In general, by virtue of Eqs. 

(3-6) and Eq. (11), under condition of apl =  0 (no at-
tenuation) the propagation of any linear combination 

( )yx
plr ,χ  of more than one different Gaussian modes 

),( yxplψ  each with the same value of propagation 

constant plβ  
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would be similar to propagation of isolated modes. So, a 
beam with a cross section corresponding to Eq. (14) 
will have no change in its amplitude-phase structure 
during propagation in waveguide medium. Amplitude-
phase distributions having cross-section which can be 
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described by Eq. (14) we will call invariant multimode 
beams. Invariant multimode beam of a waveguide may 
be characterized by the following invariance properties: 
1. Each discrete waveguide mode set ( ){ }yxpl ,ψ  is 

able to generate a continuous set of invariant mul-
timode beams (!) because of the continuous charac-
ter of complex-valued coefficients plC~  in Eq. (14). 

2. Self-reproduction: invariant multimode beam does 
not change its amplitude-phase structure and size 
during propagation in a waveguide medium. 

3. Gaussian multimode invariant beam does not 
change its amplitude-phase structure  during 
propagation in free-space. 

4. Gaussian multimode invariant beam does not 
change its amplitude-phase structure during 
propagation through a Fourier-stage, whereas the 
fundamental radius or self-mode parameter 
changes as in Eq. (12). 

5. An invariant beam can propagate through a 
waveguide without pulse enlargement effect [5]. 

6. Two different invariant beams with different value 
rpl are orthogonal under condition that 

constC pl =
~  for all ( )lp,  pairs. 

3. Invariant multimode beam investigation by methods 
of computational and optical experiments. 

In [2,3] we presented a MODAN capable of trans-
forming a Gaussian (0,0) input beam into a unimodal 
Gauss-Hermite (GH) (1,0) complex amplitude distribu-
tion with high efficiency. In order to demonstrate fun-
damental properties of invariant multimodal beams, we 
designed a MODAN which should be able to transform 
one single transversal mode into the sum of two other 
modes with uniform propagation constant. For the input 
beam we selected the Gauss (0,0) mode characterized 
by the intensity distribution in the plane of MODAN 
(x,y,0) 
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and by a phase distribution assumed to be constant, 
which is a good approximation in the vicinity of the 
beam waist. As an invariant multimode beam under in-
vestigation the sum of two Gauss-Hermite modes with 
numbers (4,0) and (2,2) was chosen: 
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So, the complex transmission function of the manu-

factured DOE can be written as: 
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Fig. 2 presents the theoretical amplitude distribution 
),(4 yxχ  in the cross-section of the beam to be 

formed. Fig. 3 presents the theoretical phase distribution 
( )),(arg 4 yxχ  in the cross-section of the beam to be 

formed. Fig. 4 presents a result of computer simulation 
for the amplitude distribution ),(4 yxχ  in the cross-
section of the beam after propagation through an addi-
tional Fourier-stage. This simulation was realized by 

means of the software “QUICK-DOE” developed at the 
Image Processing Systems Institute of the Russian 
Academy of Sciences [9]. The amplitude structure con-
servation could be confirmed.  

 
Fig. 2: Theoretical amplitude distribution  
in the cross-section of the invariant beam  

 
Fig. 3: Theoretical phase distribution in the  
cross-section of the invariant beam (black 
corresponding to phase 0, white - to π ) 

 
Fig. 4: Amplitude distribution in the cross-section  
of the invariant beam after propagation through  

a Fourier-stage (computer simulation) 
The element was coded as a grating with 33.3 

lines/mm, with a rectangular shaped carrier function 
"slowly" modulated across the aperture (generalized 
Kirk-Jones method, [1] ). The grating was calculated 
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with a resolution of 1024*1024 pixels, with a pixel size 
of 3 microns. 

The selected element was designed to work with an 
external Fourier lens, and for the calculation the follow-
ing parameters had been used: a wavelength of the illu-
minating beam of λ = 632.8 nm, a Gaussian input beam 
radius of σ00 = 0.525 mm, a fundamental radius of σ = 
0.5 mm for the generated invariant multimode beam in 
the focal plane of the Fourier lens, a focal length of this 
lens of  f = 452 mm. The distance between the used 
zero-order spot and the corresponding plus/minus first 
order (parasitical) spots should be 9.52 mm. During cal-
culation as criterion for reconstruction quality the en-
ergy efficiency was applied: 
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where ( )yx,4χ  is the complex amplitude distribution 
generated by the calculated element and D is the MO-
DAN’s aperture domain. The calculation resulted in a 
value of η = 0.18 for energy efficiency. The essential 
result of the calculation was the phase distribution itself 
representing the MODAN to be manufactured. Fig. 5 
depicts a half-tone mask of the element calculated for 
the set of parameters listed above.  

 
Fig. 5: Phase mask of manufactured MODAN  

(central part) 
The calculated element has been manufactured as a 

multilevel-binary surface profile by (variable dose) 
electron-beam direct-writing into a PMMA resist film 
and a subsequent development procedure of the resist. 
The final element consists of a fused silica substrate 
coated with the structured PMMA film. The continuous 
phase profile had to be transferred into a corresponding 
surface profile, which in turn had to be approximated by 
a step-like structure. For the element under discussion, 
we used a 15 step/16 level approximation of the con-
tinuous profile. In connection with the specific techno-
logical approach we used, every single step in depth of 
the staircase profile had to be generated by an individ-
ual „etching“ process. Therefore, 15 isolated binary 
masks had to be generated (as data fields only - not 
physically!) by software, starting from the continuous 
surface profile. The 15 dose levels each corresponding 

to one of the final surface levels were realized by 15 
times application of a binary electron beam writing 
process, using a commercial ZBA 23 system. After a 
proper development procedure applied to the PMMA 
film, the designed staircase surface profile turned up 
and could be controlled by means of an optical profiler 
MICROMAP 512.  The manufactured MODAN had to 
demonstrate its ability to realize the invariant multi-
mode forming it was designed for in a series of optical 
experiments. The set-up schematically shown in Fig. 6 
allowed to measure the intensity distribution generated 
by the element in the focal plane of the Fourier lens. A 
typical result of this investigation is depicted in Fig. 7. 

 
Fig. 6: Set-up for MODAN characterization by 

measurement of the formed intensity distribution 

 
Fig. 7: Amplitude as result of measurement in the 

MODAN's focal plane 
Comparison with theoretical results (Figures 2 and 

4) manifests on one hand a very good correspondence, 
for example regarding the fundamental radius of the 
generated invariant multimode beam, and regarding the 
overall shape. On the other hand in experiment a certain 
asymmetry of the intensity distribution is visible, which 
is not predicted by theory for the ideal element. The set-
up in Fig.6 was used furthermore for estimating the en-
ergy efficiency regarding Eq. (18): For this purpose, the 
CCD-camera had to be replaced by a power meter, and 
parasitical diffraction orders in the focal plane of Fou-
rier lens had to be camouflaged properly by a stop with 
an adjustable circular aperture. The energy efficiency in 
this experiment was found to be η = 0.16, which is 
somewhat less than the result η = 0.18 as obtained by 
simulation. This difference may be accounted for by 
technological errors during MODAN fabrication as well 
as by quantization and discretization errors. To demon-
strate the "invariant" character of the complex ampli-
tude distribution generated by the MODAN, further evi-
dences were needed: one possibility was to submit this 
distribution to a further Fourier transformation. A 
complex amplitude distribution representing any invari-
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ant multimode beam should have retained its spatial 
structure during this procedure, while changing its 
fundamental radius according to Eq. (12). The optical 
set-up used for this experiment is schematically shown 
in Fig. 8. A typical result representing a measured 
amplitude distribution in the focal plane of second 
Fourier lens is given in Fig. 9. An additional evidence 
for mode-like behavior could be received by 
investigating the generated phase distribution: For this 
purpose we used an interferential set-up, where the 
Gaussian (0,0) beam was applied as reference beam. An 
interferential fringe pattern could be generated by 
introducing a slight tilt between the two interferometer 
arms. Then - caused by the phase jump of π appearing 
between the different parts of the invariant beam - a 
corresponding shift between different parts of fringe 
pattern system should occur. Additionally to the 
estimated shift between fringe systems in different areas 
of beam cross-section we can see a different tilt of the 
fringe systems on left and right side, respectively, of 
this cross-section. This effect is probably caused by 
manufacturing imperfections, and has to be investigated 
further in more details. 

 
 Fig. 8: Scheme with invariant beam passing through an 

additional Fourier-stage  

 
Fig. 9: Amplitude distribution measured in the output 

plane of the Fourier-stage  
A typical measured result of such a fringe pattern is 

shown in Fig. 10. Furthermore we applied a digital 
method following [10] to calculate the phase distribu-
tion in the focal plane of first Fourier lens: the phase 
distribution has been restored from measured intensity 
distribution in the input plane and in the output plane, 
respectively, of second Fourier lens, by 26 iterations 
following the procedure of [10]. The set-up used for 
registration of the pairs of intensity distributions is simi-
lar to that of Fig. 6 and Fig. 8. After finishing the last of 
the 26 iterations, the integral root-mean-square devia-
tion between measured and calculated amplitude distri-
butions achieved less then 16%. The calculated ("re-

stored") phase distribution in the input and output 
planes of second Fourier lens is presented in Fig. 11.  

 
Fig. 10: Intensity distribution as result of interferential 

investigation  

 a)  

b)  

Fig. 11: Results of the invariant beam phase iterative 
restoration a) restored phase distribution in the input 
plane of the second Fourier-stage, b) restored phase 

distribution in the output plane of the second Fourier-
stage 

So, the invariant beam amplitude structure conserva-
tion feature was investigated by intensity distribution 
measurements in the input and output planes of the Fou-
rier-stage. Invariant beam intensity investigation results 
showed good stability of the invariant beam intensity 
structure during beam propagation. The phase structure 
of formed invariant beam was investigated by both digi-
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tal and interferometric methods. The iterative phase res-
toration results are in good agreement with the experi-
mental phase investigation results. Invariant beam phase 
investigation results showed stability of the invariant 
beam phase structure during beam propagation through 
Fourier-stage. 

Besides, in this work the comparison of invariant 
and "non-invariant" beams behavior was implemented 
by methods of calculation and optical experiments too. 
The multimode beams consisting of more than one 
modes having different propagation constant values 
were called "non-invariant beams". It is very interesting 
to compare invariant beams with "non-invariant" ones. 
For this purpose, a MODAN generating a mode combi-
nation of Gauss-Hermite modes with numbers (0,1) and 
(2,2) with equal weights was designed. All physical pa-
rameters were chosen as for the MODAN described be-
fore. Corresponding results of optical and computa-
tional investigations are presented in Fig. 12 – Fig. 15. 

 
Fig. 12: Theoretical amplitude distribution in the  

cross-section of the “non-invariant” beam  
(Gauss-Hermite (0,1)+(2,2)) 

 
Fig. 13: Theoretical amplitude distribution in the  

cross-section of the "noninvariant beam"  
after propagation through a second Fourier-stage 

(computer simulation )  

 
Fig. 14: Amplitude as result of measurement  

in the focal plane of MODAN 

 
Fig. 15: Amplitude as result of measurement 
 in the output plane of second Fourier-stage 

4. Laser modal beam selection by DOE in 
telecommunication tasks 

Modern communication systems are characterized 
by users' demand for a number of channels as large as 
possible. If we think about laser light as carrier for the 
information, the application of modes turns out to be a 
key to this problem. Communication systems so far are 
based on the application of only different longitudinal 
modes as independent channels [11,12], exploiting 
wavelength as distinctive feature. In other words, wave-
length-selective optical filters serve both as channel 
generators and multiplexers. The real-time one-fiber 
image transfer system described in [13] is using white 
light decomposition into spectral components. The 
component selection in [13] is based on application of 
segmented DOE. Each of DOE segments in [13] is 
matched to the corresponding spectral range. Recent 
achievements in the development of dielectric band pass 
filters with bandwidth nm1≤∆λ  as mass products re-
markable enlarged the number of available channels in 
such systems. Our suggestion is now to employ differ-
ent transversal modes as non-interacting transmission 
channels, instead of (or may be later - additionally to) 
the common longitudinal modes. This suggestion is mo-
tivated by the fact that certain novel Diffractive Optical 
Elements (DOEs), named as MODANs, turned out to be 
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able to generate desired transversal modes respectively 
mode mixtures, to transform given modes into other 
modes, to separate different modes from each other, or 
to analyze mode mixtures of unknown composition re-
garding the mode content [1]. The theory of these MO-
DANs is described in [1] in detail. Even though only a 
small portion of all the elements treated there has been 
manufactured and experimentally investigated till now, 
and though many of them suffer from their low diffrac-
tion efficiency, caused by applied coding methods, such 
MODANs represent very helpful tools to deal with 
transversal modes. Recent promising results [2,5] re-
garding calculation, manufacture and experimental in-
vestigation of effective mode-transforming MODANs, 
motivated us to realize and to investigate a complex sys-
tem representing a model of a multichannel communica-
tion device based on application of transversal modes 
[3]. Note that use of invariant beams results in essential 
improvement of fiber channel capacity since the data 
transfer occurs in a parallel fashion through several in-
variant beams, with no pulse blurring observed in each 
branch. In this way one can obtain modal channel mul-
tiplexing together with common-used frequency multi-
plexing. It is interesting to note that “spectral” DOEs 
[14,15] which can operate with some wavelengths in 
parallel can be used for such purpose in future.  

At the same time, the choice of invariant beams as a 
base for construction of multichannel telecommunica-
tion system allows to use as free parameters for calcula-
tion of the phase DOE generating the set of several in-
variant beams in parallel not only the phase shifts be-
tween different invariant multimode beams, but addi-
tionally internal shifts and energy redistribution be-
tween separate modes within invariant multimode beam 
as well [5]. 

5. Design of a multichannel waveguide 
telecommunication system with high energy efficiency 

Let us suppose that we have to construct a system 
consisting of  Nk  independent digital information chan-
nels (Fig. 16) transferred through an ideal lens-like me-
dium, where different channels should be represented 
by different invariant multimode Gauss-Hermite beams 
according to Eq. (14). Let us assume further a “homo-
geneous” energy distribution between the Nk channels 
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where i
plC~  - are their mode coefficients of correspond-

ing i th invariant multimode beam described by Eq. 
(14), and E0  is the energy of the collimated laser source 
L. 

We will not take into account energy losses con-
nected with absorption and Fresnel reflection. The gen-
eral number of invariant beams which can be used is the 
cut-off number ( ) cutNlp =+ max  of the waveguide F 

[4]. For spatial separation and subsequent time modula-
tion we realize the following decomposition which is a 
modification of one proposed in [16] before: 
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where A(x,y ) is the amplitude distribution in the cross-
section of the illuminating collimated beam, ( )yx,ϕ  is 

the phase function of the MODAN M and jν is the car-

rier frequency introduced for spatial beam separation.  

 
Fig. 16: General scheme of a multichannel waveguide 

telecommunication system. L - laser light source,  
P - collimator, M - MODAN, O - Fourier stage, D - set  

of modulators, F - ideal parabolic index fiber. 

To find the coefficients j
plC~  in Eq. (20), we can use 

any recursive optimization procedure (for example, sto-
chastic procedure [17] ) minimizing the functional: 
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with the result of coefficient estimation after m th recur-
sive iteration procedure: 
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m
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j
pl πνψ 2exp,• ,  (22) 

where ( )yxm ,ϕ  is the DOE’s phase distribution after 
m-th iteration. 

6. Limits of the scalar theory applicability to 
description of gradient-index waveguides 

The diffraction calculation is based on solving (in 
different ways) a wave equation adequately describing 
the light propagation (in particular, diffraction) only in 
one of the polarization states: TE- or TM- polarization. 
This is due to the fact that one can fully define the elec-
tromagnetic wave knowing at least its two longitudinal 
components - the electrical (TE-wave) and the magnetic 
(TM-wave) one [7]. Setting up and solving the wave 
equation for one longitudinal component is substanti-
ated for homogeneous index medium or a medium with 
cylindrical inhomogeneities. Otherwise, the emergence 
of differently polarized modes becomes inevitable. In 
this case, the solution of the wave equation yields a 
mispresented modal composition which will involve not 
really present higher-order modes and lack real, but dif-
ferently polarized modes. Hence, we infer that diffrac-
tion theory becomes inapplicable for calculation of light 
propagation through a waveguide with non-cylindrical 
inhomogeneities having a geometrical size greater than 
quarter of the wavelength. There is a more detailed 
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analysis of diffraction theory applicability for gradient 
waveguide analysis in [4]. 

7. Conclusions 
In this paper the principal possibility of invariant 

beam forming by diffractive optical elements was 
shown. Fundamental properties of invariant multimode 
beam were investigated by methods of calculation and 
optical experiment. There is a good agreement between 
theory and experimental results. The invariant beam 
amplitude-phase structure conservation feature was in-
vestigated by intensity distribution measurements in in-
put and output planes of an additional  Fourier-stage. 
Invariant beam intensity investigation results showed 
the stability of invariant beam intensity structure during 
beam propagation. Phase structure of formed invariant 
beam was investigated by both digital and interferomet-
ric methods. The iterative phase restoration results are 
in good agreement with interferometric phase investiga-
tion results. Invariant beam phase investigation results 
showed stability of the invariant beam phase structure 
during beam propagation. The comparison of invariant 
and "non-invariant" beams behavior was made by 
methods of calculation and optical experiments too. In-
variant beams fundamental properties were investigated 
(self-reproduction, amplitude-phase structure stability) 
promising good prospectives for application of invariant 
beams in future high efficient telecommunication sys-
tems. 
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Abstract  

Laser light modes are the beams in the cross-section of which the complex amplitude is described 
by eigenfunctions of the operator of light propagation in the waveguide medium. The fundamental 
properties of modes are their orthogonality and their ability to retain their structure during propaga-
tion for example in a lenslike medium, in free space or a Fourier stage. Novel Diffractive Optical 
Elements (DOEs) of MODAN-type [1] open up new promising potentialities of solving the tasks of 
generation, transformation, superposition and subsequent further separation of different laser modes. 
Now we present new results obtained by synthesis and investigation of beams consisting of more 
than one two-dimensional Gaussian laser modes with the same value of propagation constant (in-
variant multimode beams) formed by DOEs. The application of these phenomena could enhance the 
fiber optical system transfer capacity without pulse enlargement. 
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