ФОКУСАТОРЫ В КРУГ И КОЛЬЦО ИЗ ГАУССОВОГО ПУЧКА

В.В. Котляр, А.П. Осипов*

Институт систем обработки изображений РАН, г. Самара *Самарский государственный аэрокосмический университет

Введение

Известно несколько методов формирования радиально симметричных фигур с использованием ДОЭ.

Для фокусировки когерентного света в узкое кольцо обычно используются конические аксиконы в сочетании со сферическими линзами [1] и бинарные аксиконы [2]. Под узким световым кольцом в фокальной плоскости понимается такое кольцо, ширина которого меньше дифракционного предела Фраунгофера для конической волны с ограниченной апертурой, дифрагирующей на ДОЭ [3].

В [5] рассматривается итеративный алгоритм, который позволяет осуществлять расчёт радиальносимметричных ДОЭ с небольшим числом уровней фазы. В [5] при расчёте ДОЭ, формирующих дифракционные картины, обладающие радиальной симметрией (круг, набор колец) также применяются итеративные алгоритмы, характерной особенностью которых является использование прямого и обратного преобразований Ханкеля.

В [4] дан общий геометрооптический метод для расчёта фокусаторов с неточечным откликом. В [3] приведена формула фазы ДОЭ, фокусирующего плоский пучок в широкое кольцо с равномерным распределением интенсивности, рассчитанного геометрооптическим методом.

Формула для фазы ДОЭ, фокусирующего гауссовый пучок в радиально-симметричную область и рассчитанного геометрооптическим методом, ещё нигде не встречалась. Расчёту данного ДОЭ и его исследованию и посвящена данная работа.

1. Постановка задачи

Предположим, что гауссовый пучок с амплитудой: $W_0(r) = \sqrt{I_0(r)}$,

где $I_0(r)$ –интенсивность освещающего пучка,

$$I_0(r) = \exp(-r^2 / w^2)$$
 (1)

падает на ДОЭ с комплексной функцией пропускания: $\tau = \exp(i\varphi(r)), r \le a$, где *a* - радиус ДОЭ, *w* - радиус перетяжки гауссового пучка. Требуется

найти $\varphi(r)$, обеспечивающую формирование заданного кругового распределения интенсивности:

$$I(\rho) = 1, \rho_1 \le \rho \le \rho_2, \qquad (2)$$

в фокальной плоскости z=f(см. рис. 1).

Рис: 1. Геометрия задачи фокусировки в кольцевую область.

2. Метод расчёта ДОЭ

Для вычисления $\varphi(r)$ воспользуемся полученными в работе [6] уравнением наклонов лучей (3) и уравнением сохранения энергии, представленным в интегральной форме (4):

$$\frac{\partial \varphi}{\partial r} = \frac{k}{f}(\rho - r) \quad , r \in [0, a], \rho \in [\rho_1, \rho_2]. \quad (3, 4)$$

где $k = \frac{2\pi}{\lambda}$, λ - длина волны падающего света.

Подставляя (1) и (2) в (4), получаем зависимость:

$$\rho(r) = \sqrt{\rho_2^2 - \frac{(\rho_2^2 - \rho_1^2)}{(1 - \exp(-a^2/w^2))} [\exp(-r^2/w^2) - \exp(-a^2/w^2)]}.$$
(5)

Далее, подставляя (5) в (3) и интегрируя, получаем конечный вид фазовой функции

$$\varphi_{\Gamma}(r) = \frac{k}{f} \int_{0}^{r} \left(\sqrt{\rho_{2}^{2} - \frac{(\rho_{2}^{2} - \rho_{1}^{2})}{(1 - \exp(-a^{2} / w^{2}))}} \left[\exp(-r^{2} / w^{2}) - \exp(-a^{2} / w^{2}) \right] \right) dr - \frac{kr^{2}}{2f}.$$
(6)

Для плоского фронта имеем из [3]:

$$\varphi_{n\pi}(r) = \frac{k\rho_1}{2fc} \begin{bmatrix} cr(c^2r^2+1)^{1/2} + \\ +\ln(cr+(c^2r^2+1)^{1/2}) \end{bmatrix} - \frac{kr^2}{2f},$$
(7)

где $\mathbf{c} = (\rho_2^2 - \rho_1^2)^{\frac{1}{2}} / (a\rho_1)$

При $\rho_2 \rightarrow \rho_1$,

$$\varphi_{\Gamma} = \varphi_{n\pi} = \frac{k\rho_1}{f}r - \frac{kr^2}{2f}.$$
(8)

Из уравнения (9) и (10) для фаз ДОЭ, фокусирующих гауссовый и плоский пучки в круг радиусом ρ .

Из (8) видно, что сужение кольца фокусировки приводит к известной формуле для фазы ДОЭ типа аксикон +линза.

Из (5) и (7) при $\rho_2 = \rho, \rho_1 = 0$, легко получить

$$\varphi_{\Gamma}(r) = \frac{k}{f} \rho_0^{f} \left(\sqrt{\frac{1 - \exp(-r^2 / w^2)}{(1 - \exp(-a^2 / w^2))}} \right) dr - \frac{kr^2}{2f}, \quad (9)$$

$$\varphi_{n\pi} = -\frac{k}{2f} \left(\frac{\rho}{a} - 1\right) r^2.$$
(10)

3. Численный расчёт

На рис. 3, 4, 5 представлены результаты расчёта по формулам (6) и (7). Причём интеграл в (6) вычисляется простым методом прямоугольников. После расчёта радиального вида фазы ДОЭ формируется двухмерный массив размером *N×N*, к которому применяется преобразование Френеля, вычисляемое при помощи быстрого преобразования Френеля.

Для оценки характеристик ДОЭ используются величины энергетической эффективности *E* и среднеквадратичного отклонения *о*. Величина

$$E = \sum_{n \in \Omega_1} I_n / \sum_{m \in \Omega_0} I_m ,$$

где Ω_1 - заданная область фокусировки,

 Ω_2 - вся фокальная область, характеризует долю энергии, фокусируемую в заданной области, ко всей энергии в фокальной плоскости. Энергетическую эффективность ДОЭ будем оценивать долей энергии освещающего пучка, попадающей в окрестность кольца по уровню 0,3 максимальной интенсивности. Величина

$$\sigma = \frac{1}{\bar{I}} \left(\frac{1}{N} \left(\sum_{n \in \Omega_1} (I_n - \bar{I})^2 \right)^{\frac{1}{2}},\right.$$

где
$$\bar{I} = \frac{1}{N} \sum_{n \in \Omega_1} I_n$$
,

характеризует среднеквадратичное отклонение распределения интенсивности от среднего значения в заданной области фокальной плоскости.

Значения *E* и σ представлены в зависимости от параметра $S = (\rho_2 - \rho_l)/\Delta \ \epsilon$ таблице 2, где Δ - минимальный дифракционный размер в фокальной плоскости: $\Delta = \lambda f/a$; величина *S* характеризует ширину фокального кольца, по сравнению с дифракционным размером Δ .

Отношение w/a=0,33 было подобрано экспериментально. При таком соотношении наблюдалось наименьшее среднеквадратичное отклонение (рис.2). Увеличение w/a приводит к сближению фазовых функций для гауссового и плоского пучков. Уменьшение w/a приводит к тому, что вся энергия фокусируется в центре.

Таблица 1

Параметры расчётов

Радиус ДОЭ, <i>а</i>	Длина волны, λ	Фокусное расстояние, f	Отношение радиуса перетяжки гауссового пучка к радиусу ДОЭ <i>w/a</i>	Число точек в плоскостях, N×N	Минимальный дифракционный размер, Д.
12,8 мм	2 мкм	1285 мм	0,33	256×256	0,2 мм

Таблица 2

Параметры Е и б для ДОЭ, фокусирующих из плоского и гауссового пучков

Ν	S	ρ_1/Δ	ГАУССОВЫЙ ПУЧОК		ПЛОСКИЙ ПУЧОК	
Рис.						
			E(%)	δ(%)	E(%)	δ(%)
3	0	10	97,05	14,52	94,69	31,00
4	20	0	98,67	8,01	94,92	32,95
5	1	30	85,80	42,37	82,33	39,86

4. Сравнение результатов фокусировки в кольца различной толщины плоского и гауссового световых пучков

Рис. 3 а) и г) - фазовые функции ДОЭ, формирующие кольцо с $\rho_1 = 10\Delta$, толщиной : $S = 20\Delta$; б) и д) - 2D-распределение интенсивностей в фокальной плоскости; в) и е) - радиальное сечение интенсивностей для освещающих гауссового и плоского пучков, соответственно.

Рис. 4 а) и г) - фазовые функции ДОЭ, формирующие круг толщиной S = 20 Δ ; б) и д) - 2D-распределение интенсивностей в фокальной плоскости; в) и е) - радиальное сечение интенсивностей для освещающих гауссового и плоского пучков, соответственно.

Рис. 5 а) и г) - фазовые функции ДОЭ, формирующие кольцо с ρ₁ = 30Δ, толщиной : S = Δ; б) и д) - 2D-распределение интенсивностей в фокальной плоскости; в) и е) - радиальное сечение интенсивностей для освещающих гауссового и плоского пучков, соответственно.

Выводы

1) Из таблицы 2 видно, что для формирования широких колец (S>4) и кругов эффективнее использовать ДОЭ для гауссового пучка, так как в данном случае в 2-3 раза ниже δ и несколько выше *E*.

2) Расчётные значения распределения интенсивности на рис. 3 и 4 выявляют меньшие флуктуации интенсивности на фокальном кольце для ДОЭ, фокусирующего гауссовый пучок.

 В случае использования ДОЭ для гауссового пучка отсутствуют пики интенсивности при ρ=0.

4) Как видно из рис. 5, оба ДОЭ формируют примерно одинаковое распределение интенсивности в фокальной плоскости на что, собственно, и указывает общий вид их фазовых функций (8) в случае фокусировки в тонкое кольцо. Заметим, что ширина кольца на рис. 5 (δ) больше, чем на (рис. 5 (∂). Это обусловлено тем, что гауссовый пучок несколько уменьшает апертуру ДОЭ.

Литература

- 1. P. Belanger, M. Rioux Ring patters of a lensaxicon doublet illuminated by a Gaussian beam // Appl. Opt., 1978. V.17, № 7. P. 159-163.
- A. Fedotowsky and K. Lehovec Optimal Design for Annual Imaging // Applied Optics. 1974. V. 13, № 12. P. 2919-2923.
- L.L. Doskolovich, S.N. Khonina, V.V. Kotlyar, I.V. Nikolsky, V.A. Soifer, G.V. Uspleniev Focusators in to a ring // Optical and Quantum Electronics. 1993. V. 25. P. 801-804.
- V.A. Soifer, M.A. Golub Diffractive micro-optical with non – point response // Proceedings of SPIE. 1992. V. 1751. P. 140-151.
- 5. Методы компьютерной оптики // Под редакцией Сойфера В.А.. М. Физматлит. 2000.
- M.A. Golub, I.N. Sisakyan, V.A. Soifer Infra-red Radiaton Focusators // Optical and Lasers in Engineering. 1991. V. 15. P. 297-309.

Focusators of Gaussian beam into a circle and a ring

V.V. Kotlyar¹, A.P. Osipov² ¹Image Processing Systems Institute of RAS, Samara ²Samara State Aerospace University

Abstract

Several methods are available for generating radially symmetric figures using DOEs. Conical axicons in combination with spherical lenses [1] and binary axicons [2] are usually used to focus coherent light into a narrow ring. A narrow light ring in the focal plane is understood as a ring with the width less than the Fraunhofer diffraction limit for a conical wave with the limited aperture diffracted by the DOE [3].

<u>Citation</u>: Kotlyar VV, Osipov AP. Focusators of Gaussian beam into a circle and a ring. Computer Optics 2001; 21: 40-44.

References

- [1] Bélanger P, Rioux M. Ring patters of a lens-axicon doublet illuminated by a Gaussian beam. Appl Opt 1978; 17(7): 159-163.
- [2] Fedotowsky A, Lehovec K. Optimal design for annual imaging. Appl Opt 1974; 13(12): 2919-2923.
- [3] Doskolovich LL, Khonina SN, Kotlyar VV, Nikolsky IV, Soifer VA, Uspleniev GV. Focusators into a ring. Opt Quantum Electron 1993; 25: 801-804.
- [4] Soifer VA, Golub MA. Diffractive micro-optical with nonpoint response. Proc SPIE 1992; 1751: 140-151.
- [5] Soifer VA, ed. Methods of computer optics [In Russian]. Moscow: "Fizmatlit" Publisher; 2000.
- [6] Golub MA, Sisakyan IN, Soifer VA. Infra-red radiaton focusators. Opt Lasers Eng 1991; 15: 297-309.