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Introduction
 Development of laser systems with high average power 

and small beam divergence, particularly with the prog-

ress of optical fiber lasers, has recently become one of 

leading tendencies in the development of laser tech-

nologies. However in most cases, increasing the maxi-

mum radiation power at near-diffraction output beam 

divergence shall restrict non-linear and thermooptic 

processes in active laser medium [1]. One of solutions 

to this problem is related to implementing the idea of 

laser beam summation, i.e. creation of multichannel 

laser radiators. Performance limits of this system may 

be achieved at coherent summation of laser beams at 

the output of all channels. 

There are over 20 various engineering solutions to the 

problem of coherent summation of laser beams [2, 3]. 

Among them of key importance are the methods based 

on active control of a radiation phase of every laser in 

the system (active phase-locking methods). In most 

cases they are implemented by means of a distribut-

ed adaptive optical system. Currently, the most widely 

implemented system is the adaptive aperture sensing 

system based on the algorithm of parallel stochastic 

gradient approximation [4, 5]. It is impossible to use 

the traditional for adaptive optics wave front sensors 

(WFS), for example, a Shack-Hartmann wave front 

sensor, in this multiaperture system, because their 

work is based on the principle of constructing contin-

uous maps of phase aberrations. 

In this paper we have considered a phase-locking sys-

tem for laser radiators with a multiaperture wave front 

sensor (MWFS) based on the Gerchberg-Saxton algo-

rithm [6, 7]. Numeric analysis and simulation of this 

algorithm have been performed in the paper, and it has 

been shown that its characteristic feature for retrieving 

phase information is the availability of stagnation con-

ditions. A global optimization strategy for retrieving 

phase information is proposed, and the system reduc-

tion block-structure method is considered. Numerical 

simulation of the system has been performed for dif-

ferent configurations of a multiaperture matrix. 

1. Phase-locking system based 
on the Gerchberg-Saxton algorithm 

The algorithm proposed in 1972 by Gerchberg and 

Saxton enables to retrieve complex fields on the 

lens aperture and in its focal plane based on their 

intensity distributions. The mathematical formula-

tion of the problem is to build the complex function 
)(E 
~

 by its module )(E 
~

 and by the Fourier trans-

form module )rE(


, where )rE(


 is the inverse Fourier 

transform )(E 
~

. A scheme of iterative procedure is 

given in Fig.1. 

Fig.1. Algorithm scheme for retrieving the field amplitude 
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image processing methods
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For the selected initial phase approximation and the 

module distribution measured in the aperture plane А, 

the complex field amplitude is calculated in the focal 

plane B.  Then, the obtained amplitude module is re-

placed by the measured module. Reversed beam prop-

agation is calculated hereafter. The module is replaced 

in the aperture plane, and the phase obtained thereat 

is selected as the next approximation. 

The Gerchberg-Saxton algorithm is mathematically 

written as the following iterative procedure 
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E  
is the initial aperture phase estimate 

(approximation); )(~)(~



ÒEM
 
is a known (mea-

sured) module in the aperture plane; )()( rErM Ò



 

is the known (measured) module in the focal plane; P
1 

and P
2 

are operations on module replacement in focal 

and aperture planes; FT and FT-1 are direct and inverse 

Fourier transforms, respectively.

A structural flowchart of the active phase-locking sys-

tem based on the Gerchberg-Saxton algorithm is given 

in Fig.2. 

Fig.2. The structural flowchart of the phase-locking system (1 
–a driving generator; 2 – phase modulators; 3 – laser amplifi-
ers; 4 – the object plane; 5,6 – CCD-cameras; 7 – a computer; 
8 – a beam divider; L1, L2 – lenses).

Optical signal from the integrated driving generator 

is divided into N–number of laser beams. Radiation 

is divided into two beams after it has passed through 

a unit consisting of phase modulators and one-mode 

laser amplifiers. The phase at the output of each am-

plifier is random due to different optical distances in 

separate laser channels. The main beam falls on the 

exit aperture and is focused on the object by the lens 

L1. The second beam, in turn, is also divided into 

two sub-beams to register intensity distributions on 

CCD-cameras in focal and aperture planes of the lens 

L2. Measured distributions shall go to the computer, 

where during implementation of the iteration algo-

rithm (1), the phase distribution )(~arg)(~ 


E
E

is to 

be determined, which forms control signals on phase 

modulators for phase-locking the laser channels.      

Thus, the beam divider, CCD-cameras and the com-

puter build up a phase regenerator in the multichan-

nel system, i.e. the multiaperture wave front sensor 

(MWFS).

2. Numerical analysis of the Gerchberg-
Saxton algorithm for the phase-locking 
system with MWFS

Numeric analysis of the Gerchberg-Saxton algorithm 

convergence was performed for a hexagonal packing 

model for laser radiators with the Gaussian amplitude 

distribution in every channel. 
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where a
0
 is the sub-beam equivalent radius; A0 is the 

constant value which depends on the defined trans-

mitting power at the input of radiating aperture.
 

A total number of sub-apertures in this system shall be 

determined as follows [8]
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where n is a whole number defining the number of 

“contours” around a central channel. 

The phase in each channel was randomly selected 

within ±  rad. The quality of retrieving complex 

functions )(~



E  and )(rE


 was evaluated based on two 

characteristics. Based on normalized module errors in 

the aperture plane
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is the module error at the first iteration,                                                

and also based on values of the normalized function of 

image sharpness [9]
21 ( )k
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where SPH is the sharpness function of the phased 

system (with equal phases in every channel);   
2)()( rErI kk


 . 

To understand the Gerchberg-Saxton algorithm be-

havior for retrieving phase information in MWFS, let 

us analyze, as an example, the 19-channel laser sys-

tem. The amplitude distribution in the focal plane of 

the lens L1 for phased and non-phased systems is giv-

en in Fig.3.

Fig. 4 shows the algorithm behavior as starts from two 

various random initial points )()0(
~ 


E
. 
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а)  b) 

Fig.3. Amplitude distribution in the focal plane of the 19-chan-
nel laser system (а – the phased system; b – the non-phased 
system)

а) 

b) 

Fig.4. The convergence of iterative procedures (а – the con-
vergence to the true solution; b – the convergence to the local 
extremum; 1 - mod

~
 ; 2 - ES ~ ).

It is seen from the figure that in the first case (Fig. 4а) 

the module error (4) (curve line 1) goes to zero during 

iterations, and the sharpness function (5) goes to its 

maximum, i.e. the modules
 

)(~



E  and )(rE


 shall be 

retrieved here in the only way. Whereas in the second 

case (Fig. 4b) the algorithm didn’t converge and fall 

to the stationary state differed from the true state (the 

so-called ‘stagnation condition’). These conditions are 

typical for projection image retrieval algorithms and 

are often associated with local exrema, for example, 

in the phase problem, where the retrieval algorithm is 

based on the limited optimization problem which can 

be solved using the gradient projection method [10]. 

Therefore, the iteration procedure (1) may be consid-

ered as the local optimization of the functional (4). 

3. Optimization strategy 
for retrieving phase information 

The existence of stagnation conditions or local extrema 

in the Gerchberg-Saxton algorithm is considered to be 

a severe restriction to be used in the phase informa-

tion retrieval problem in MWFS. The algorithm, being 

in itself rather simple and fast, is reduced to the true 

solution )(~



ÒE  only under certain conditions. For 

example if the initial approximation )(~
0 


E  is located 

closely to )(~



ÒE , when the number of phased channels 

is small, etc. In these circumstances the guaranteed al-

gorithm convergence may be ensured by means of the 

global optimization methods. 

There are a lot of approaches to solve multi-exper-

imental problems; however, there is no universal 

standard practice how to solve them. The choice of 

the optimal method for a particular problem is in-

fluenced by various factors caused by specifics of the 

problem. The specific feature of the Gerchberg-Sax-

ton algorithm is quickness and easiness of the local 

optimization, when no time-consuming calculation 

of partial derivatives required. In fact, simplicity of 

performing the operations P
1 
and P

2 
(replacement of 

the obtained module with the known one) ensures a 

high speed of iterations almost regardless of the di-

mension of problem. Therefore, when constructing 

the global optimization procedure, it is reasonable 

to focus on the approach based on multiple search-

ing for local extrema from different starting points 

located randomly thorough the whole optimization 

set, and on further selection of the best one. The al-

gorithm of this type is called a “random multistart” 

[11]. Its definite advantage, in addition to the speed 

of iterations, is the possibility for simultaneous 

searching for local extrema from different starting 

points that allows one to implement it on a parallel 

computer consisting of similar processors perform-

ing similar operations, the main of which is the fast 

Fourier transform. In this case, the global extremum 

search time won’t exceed the performance time for 
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an individual iteration procedure. As it is shown in 

paper [12], for the phase-locking problem in the 

multi-channel laser system based on this algorithm, 

the number of parallel processors linearly increases 

with increasing the number of phased sources.

However, at the large number of phase-locking chan-

nels the increase of the number of parallel processors, 

which corresponds to the dimension L of the initial re-

trieval }..1),({ )0(
~ Li
iE




, doesn’t practically influence 

the result. Fig. 5 gives the dependence of the percent-

age of the algorithm convergence to the global extre-

mum Conv, depending on the number of laser sources 

N at L=100 of independent local iteration procedures. 

While calculating, the number of iterations is k=150, 

and the maximum module error, at which the algorithm 

convergence was fixed, is 02,0~
 . As is seen from the 

figure, the average percentage of the algorithm conver-

gence shall decrease depending on the increase of the 

number of channels in the laser system. In this case, as 

shown in paper [12], the number of iterations required 

for the algorithm convergence will increase. 

Fig.5. The percentage of the Gerchberg-Saxton algorithm 
convergence depending on the number of phased channels

From the above figure it is seen that even at N=37 the 

percentage of the algorithm convergence halves (Conv 

 50%), and at further increasing the number of chan-

nels there comes a point, when the algorithm fails to 

fall into the global extremum from neither of starting 

points. Therefore, when the number of channels is 

large, it is necessary to use some methods of reduc-

tion (declining) of the dimension of problem, either by 

means of mathematical methods, or in hardware.

4. Phase-locking block-structure system 
One of the possible methods of reduction may be 

based on the block-structure principle. In this case, 

the total system of channels is divided into blocks 

of several channels, in each of which the phase in-

formation is parallely retrieved. The base number 

of channels in the block shall be selected in such a 

way, that the global extremum is achieved practical-

ly during a one-step cycle of iteration procedure. 

Proceeding from Fig.5, for a hexagonal source ar-

rangement structure with round sub-apertures, the 

number of channels in the block should not exceed 

7 (Conv  98%). 

The specific feature of the Gerchberg-Saxton algo-

rithm is characterized by the fact that phase informa-

tion is retrieved in each channel within an accuracy of 

general phase shift in the block. However, this phase 

shift doesn’t coincide between individual blocks that 

result in necessary additional phase “crosslinking” be-

tween separate blocks. In this case, it is possible to use 

the following two options:

1. Dividing the system into blocks with one or sev-

eral common channels and “crosslinking” the phases 

with regard to common channels.

2. Dividing the system into blocks without common 

channels and performing the additional iteration pro-

cedure for the general system.

Let’s rewrite the formula which defines the total num-

ber of sub-apertures in the hexagonal system (3) as 

follows:
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where n is the whole number (for the block system 

n>2). As is seen in the formula (6), in case of hexago-

nal packing, it is convenient to divide the system either 

by 



 

 1
2

)1(nn
 independent blocks six channels each 

and one block with seven channels, or by 
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blocks with seven radiators each with one common 

channel. Fig.6 shows, as an example, different options 

of block decomposition of the19-channel system in 

case of “crosslinking” with regard to the central chan-

nel (Fig. 6а), and in case of three independent blocks 

(Fig.6b).

a) b) 
Fig.6. Options of block decomposition of the 19-channel 
system (а – the system with the common central channel; b – 
the system without common channels)
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At first glance, the “crosslinking” system with com-

mon channels seems to be more attractive, since in 

this case there is no need to perform any additional 

iteration procedure for the whole system. However, 

in this arrangement the system’s technical complexi-

ty increases, because the problem of optimal radiation 

decomposition with common channels available hasn’t 

been solved yet. Therefore, let’s further consider the 

Gerchberg-Saxton algorithm convergence for multi-

channel laser systems with independent blocks with 

several channels each. 

The results of retrieving the 19-channel block system, 

when the common central channel available (Fig.6b), 

are given in Fig.7 (curve line 1). In this option in the 

end of iteration procedure the value of the central 

channel is deducted from every channel. In this case, 

the value of the central channel becomes zero in every 

block; therefore, in order to have a general idea of the 

field, it is required to simply add the retrieved phase 

distributions of all three blocks. 

Fig.7. The convergence of iteration procedures (1 – the 6-chan-
nel block; 2 – the 19-channel system without blocks)

From the point of view of the algorithm convergence, 

in case of 19 channels, the difference in iteration quan-

tity for the whole system and for each separate block is 

not so big. However, when the algorithm converged in 

the block system practically in each case, for the whole 

system the algorithm may not go into the global extre-

mum at least six times in sequence.

Similarly, for 37 laser channels the system is divided 

into six blocks (five blocks by six channels and one 

block with seven channels). In such decomposition 

the time required for phase-locking of one block shall 

remain at the same level as for seven channels (less 

than 15 iterations), i.e. further increasing the number 

of phased sources should not result in increasing the 

phase-locking time; so, only the number of parallel 

processes may increase (by one or two per each block). 

Whereas the total number of all necessary iterations 

for a “non-crosslinking” system shall be composed of 

the maximum number of iterations for retrieving the 

7-channel system and the n-channel system, where n 

is the number of blocks (Fig. 8). 

Fig.8. Algorithm convergence at various construction options 
for the 37-channel system; 1 – a two-stage block system; 2 – a 
system without blocks 

Within this framework, we can construct the depen-

dence of the number of iterations, required for conver-

gence, on the number of channels (Fig.9). 

Fig.9. The convergence required iterations depending on the 
number of channels at various options of the system construc-
tion (1 – the system without blocks; 2 – the block-structure 
system)

Conclusion
The paper describes an approach to the problem 

of phase-locking the laser radiators based on the 

iterative image reconstruction algorithms with 

limitations, particularly, on the Gerchberg-Saxton 

algorithm. The specifics of these algorithms is the 

presence of the so-called divergence factor which 

is characterized by obtaining “successful” and 

“unsuccessful” solutions, and may be clarified 

by stagnation conditions available (or by local 

extrema). The use of global optimization meth-

ods allows us to avoid this constraint and to build 

quite an effective strategy for retrieving phase 

information, which provides the guaranteed al-

gorithm convergence, and the application of the 

system reduction block-structure principle makes 

it possible to coherently add the large (over one 

hundred) number of channels.
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