
Image Processing, Pattern Recognition

Mandrikova O.V. et al… COMPUTER OPTICS, 2015: 39(3), 420-428

420

Introduction
The work aims to create theoretical and software 

means of analysis of geomagnetic field parameters and 

perturbation selection in the period of high solar activity. 

It is known that the study of Earth’s magnetic field 

variations is the basis for evaluation of properties and 

state of electromagnetic fields in the near-Earth space 

[1]. As a result of the impact of solar activity on the near-

Earth space magnetospheric perturbations of various 

scale and duration occur, which negatively impact on 

modern technological systems [1, 2]. The magnetic field 

may also exhibit natural catastrophic events or processes 

at their preparation stage [2]. 

Observations of the magnetic field are carried out 

in more than 70 countries. Traditionally ground 

magnetometers are used for this. Especially important 

are observation in high-latitude regions, and space 

weather forecast is required for reliable operation 

of technical infrastructure in the Arctic region. The 

recorded variations of geomagnetic field have a complex 

non-stationary structure. Fig. 1, as an example, shows 

horizontal components of geomagnetic field in the 

quiet period and during a magnetic storm. At night time 

geomagnetic activity increases, and sharp emissions and 

vibrations may occur during magnetic storms [1, 3, 4]. 

In addition to the daily course, geomagnetic data have 

seasonal, secular course and are subject to the 11-year 

cycle of solar activity [1]. 

a)  b)
Fig. 1. H-components of the magnetic field of the Earth: 
a) quiet diurnal variation; b) perturbed diurnal variation

The complex structure of geomagnetic field variations 

considerably complicates the process of their studying, 

and classical data analysis methods become of little ef-

fect to solve the task set [1, 4-6], for they do not allow 

to identify certain regularities and lead to loss of im-

portant information. The disadvantage of use of clas-

sical methods and approaches is also their insufficient 

degree of automation, which is very important for the 

tasks of rapid processing of near-Earth space data and 

of space weather forecast.

As shown by recent studies [4, 7-17], the natural and 

the most effective way of describing such data are 

[12] An automatic 
method for estimating 
the geomagnetic field

Abstract
We introduce a new method for estimating the geomagnetic field. The method is based on a combination 

of a wavelet transform with radial basis neural networks. In the method, the recorded geomagnetic field 

variations are decomposed into different-scale components and the degree of disturbance of each com-

ponent is estimated, enabling the conclusion about the field state. For the verification of the method, we 

used geomagnetic data from the “Paratunka” station (Paratunka, Kamchatka region, data registration is 

carried out by IKIR FEB RAS). Analysis of the spectral-temporal characteristics of geomagnetic field 

variations during periods of moderate and strong magnetic storms was performed. Weak perturbations 

were detected in the geomagnetic field before the storms. The obtained results have confirmed the effec-

tiveness of the proposed method.

Keywords: NEURAL NETWORKS, WAVELET TRANSFORM, GEOMAGNETIC DATA, EARTH’S MAGNETIC FIELD

Citation: MANDRIKOVA OV, ZHIZHIKINA EA. AN AUTOMATIC METHOD FOR ESTIMATING 
THE GEOMAGNETIC FIELD. COMPUTER OPTICS. – 2015;  – VOL.  39(3). – P. 420-428

O.V. Mandrikova, E.A. Zhizhikina
Institute of Cosmophysical Research and Radio Wave Propagation 
of the Far Eastern Branch of Russian Academy of Science, Russia
Kamchatka State Technical University, Petropavlovsk-Kamchatsky, Russia

DOI: 10.18287/0134-2452-2015-39-3-420-428



Mandrikova O.V. et al… COMPUTER OPTICS, 2015: 39(3), 420-428

Image Processing, Pattern Recognition 421

non-linear adaptive approximating schemes. Based on 

this approach, empirical mode decomposition methods 

(EMD) [16, 17] and adaptive wavelet decompositions 

[4, 8-15] are currently receiving intensive development 

in processing and analysis of complex data structures 

[4, 8-15]. Both of these methods take into account the 

particular structure of the signal and make it possi-

ble to describe the processes with complex structure 

[18, 19]. The advantage of wavelet analysis is a large 

number of orthogonal bases with compact support 

and the availability of fast computational algorithms 

[19]. The main difficulty in its use is the non-obvious 

choice of the basis for a specific task solution [19-21]. 

At the same time, for function approximation tasks 

there are proposed criteria for selection of wavelet ba-

sis and constructed computational algorithms which 

allow to pick basis adaptively and to minimize the er-

ror of approximation obtained [19, 21]. Unlike wave-

let transform in the EMD-method basis functions are 

determined directly from the data, and the constructed 

basis is a posteriori [20, 22]. Therefore, in most cases 

extracted approximating components can be effective-

ly used only for processing of the signal from which 

they were extracted. Such a basis is an empirical, and 

for approximation of the geomagnetic field variations 

with a continuously changing structure it is not effec-

tive enough. The disadvantage of EMD is also not fully 

developed theoretical basis [18, 20]. In particular, the 

linear independence of approximating components is 

not mathematically proven, and the orthogonal prop-

erty of selected empirical modes can only be checked 

a posteriori [23]. In turn, wavelet analysis has a well 

developed mathematical apparatus and is becoming  

widespread in the field of geophysics. Based on the 

wavelet transformation the methods are proposed for 

the analysis of features that occur in the geomagnet-

ic field during periods of strong solar flares [24, 25], 

the algorithms are developed that automatically detect 

periods of the initial phase of the storm [26] and algo-

rithms for noise removal and elimination of the peri-

odic component caused by rotation of the Earth [27, 

28]. In this paper wavelet analysis was used in con-

junction with neural networks. The neural networks 

apparatus is widely used in images recognition tasks  

and data analysis [29-31]. Neural networks also are 

effective in the field of geophysics [14, 32, 33]. This 

apparatus allows to reproduce complex nonlinear de-

pendence of data [32-34], to reveal hidden patterns in 

the data, and is easy to be implemented in automatic 

mode [35, 36].

The basis of the method developed by the authors is 

multiresolution wavelet decomposition (MWD) [19] 

and radial neural networks [36]. In the work on the ba-

sis of MWD variations of the geomagnetic field are de-

composed on different scale components that charac-

terize the field perturbed, and the noise is suppressed. 

Selected components enter the radial neural networks 

that perform assessment of their disturbance degree. 

A detailed study of geomagnetic data structure (on the 

example of the horizontal component of Earth’s mag-

netic field (H-component)) performed on the basis of 

MWD made it possible to identify signs of  field per-

turbations  and on their basis to generate images of the 

classes for the radial layers of neural networks. This 

improved the quality of the task solution on the basis 

of neural networks and, in contrast to the traditional 

architecture, has allowed to significantly reduce the 

number of used examples in their radial layer. 

To solve the problem six radial neural networks, 

united in electronic expert team, were formed in this 

paper. Formation of conclusion on the state of the 

geomagnetic field is carried out on the basis of a de-

cision rule that uses combinations of the decisions 

of experts team.

Geomagnetic data of the Paratunka station 

(Paratunka village, Kamchatka region, Insti-

tute of Cosmophysical Research and Radio 

Wave Propagation of FEB RAS performs regis-

tration) for the period 2002-2008 were used to 

test the method. The executed analysis of data 

in high geomagnetic activity periods has shown 

the prospects of application of the developed 

method and the possibility of its use in tasks of 

forecasting space weather and strong magnetic 

storms predictions.

Description of the method
Decomposition of the geomagnetic field 
variations at different scale components

As a basic space of recorded discrete data )(0 tf  is 

considered an enclosed space with a resolution 0j :

):))2(2 00
)(0 (2 ZkktclosV
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  ,

generated by the scaling function )(2 RL [19]. 

Basing on multiresolution wavelet decomposition to a 

level m  you can present data as a sum of approximating 

and detailing components: 
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In this paper we used wavelets )(, tnj and scaling 

function )(, tkm  Daubechies order 3.
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Data representation diagram based on the base of (1) 

is shown in Fig. 2.

Fig. 2. The scheme of data decomposition to the level of m

Introduction of classes of the geomagnetic 
field states and defining their attributes

A characteristic of the magnetic field state is the index 

of geomagnetic activity K [1]. The paper considers three 

possible geomagnetic field conditions, and there were 

accepted: 1) “quiet” condition (class 1), if the total sum 

of the daily index of geomagnetic activity is 10K  ;

2) ”weakly disturbed” condition (class 2), if the 

10 18K  ; 

3)”disturbed” condition (class 3), if 18K  . 

A detailed study of geomagnetic data structure showed 

[4, 14, 15, 37, 38] that coefficients njd ,  of the detailing 

components  tg j2  of the scales 6,...,2,1 j
characterize disturbance of the field, and in the periods 

of increased geomagnetic activity their absolute values 

significantly increase. Fig. 3, as an example, shows de-

tailing components of geomagnetic  field variations of 

scale 4j  in the periods of “quiet”  and “ disturbed” 

field states. Following these results,   the absolute values 

of the component coefficients njd ,  will be taken as a 
measure of their geomagnetic disturbance. As a mea-
sure of geomagnetic disturbance of  tg j2  component a 

maximum of the absolute values of its coefficients will 

be taken: njng dV
j ,max .  

In accordance with considered field states let us 

assume that the component  tg j2
 
 can have one of 

the three possible states: “quiet”, “weakly  disturbed”, 

or “disturbed”. As shown above, the state of the 

components  tg j2 ,
 

6,...,2,1 j
 

defines the 

state of the geomagnetic field. In order to assess its 

condition let us introduce the following decision rule:  

1) if all the components have a «quiet» state, or only one 

of the components has a «weakly disturbed» state, the 

geomagnetic field has a «quiet» state (class 1); 

2) if at least one of the components has a “disturbed” state, 

the geomagnetic field has a “disturbed” state (class 3); 

3) in other cases it is considered that the field has a        

“weakly disturbed” state (class 2). 

Assessment of each of the 6 selected components 

state will be performed on the basis of radial neural 

networks, whose forming method is described below. 

a)  b) 

Fig. 3. Detailing components of geomagnetic field variations of  
scale j = -4, obtained using Daubechies wavelet of order 3: 
a) – periods of «quiet» state of the field, 
b) – periods of «disturbed» state of the field. 

Forming a radial layer of the neural 
network 

Radial neural networks traditionally have three layers 

[36]: the input layer; hidden layer of examples (radial 

layer) containing signs of classes; linear output layer, 

defining if input image belongs to the class.

In the radial layer the following conversion of input 

data is performed [36]:

1. Assessment of the state of neurons based on weigh-

ing function bwpr  , where p  is the entry vec-

tor,  w is example vector, and b  is bias.

2. Using a threshold activation function, evaluation  

proximity measure of the input vector and example.

When the r  distance between the p  input vector and 

the w  examples vector is reduced, the output of ac-

tivation function approaches the value “1”, otherwise 

– to the value “0”.

In accordance with the set task, the input vector of the 

neural network is the  tg j2
 
component. The task of the 

neural network is estimating of its condition. The mea-

sure of geomagnetic perturbation of  tg j2 component 

is the above mentioned value
 

njng dV
j ,max . 

Presented in Fig.4, values of 
2gV and

 6gV , deter-

mined for components in periods of “quiet”, “weakly 
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disturbed” and “disturbed “ field conditions indicate 

that the ranges of their values have significant over-

lap. This is due to complex nature of the process and 

the lack of clear boundaries between the considered 

classes. Given these characteristics of the process, let 

us introduce the following subclasses of the component 
states: 
1) for a “quiet” state – a subclass « – quiet» ( 1k ):

1
,max 

jnjn
Td   and «  – quiet» ( 2k ):

11
,max 

jnjnj TdT  .

2) for “weakly disturbed ” state – a subclass « -weak-

ly disturbed » ( 3k ): 21
,max 

jnjnj TdT   and 

« -weakly disturbed » ( 4k ): 22
,max 

jnjnj TdT  .

3) for “disturbed ” state – a subclass « -disturbed» 

( 5k ): 32
,max 

jnjnj TdT   and «  -disturbed» 

( 6k ): 3
,max 

jnjn
Td  .

When training the neural network the thresholds 
32211 ,,,, 

jjjjj TTTTT , determining the input fea-

ture membership to a subclass, can be estimated by 

minimizing network error on a set of training vectors.

Fig.4 The values of 
2gV  and 

6gV , defined for the com-
ponents in the periods of “quiet”, ‘weakly disturbed” , and 
“disturbed” states of the field (100”quiet”, 190 “weakly 
disturbed”,and 86 “disturbed” field variations were used in 
estimation). 

The introduced above measures of geomagnetic 

disturbance define characteristics of considered 

subclasses. Using disturbance measure of the 

coefficient,  its absolute value njd , , for each 

introduced subclass ik
 
let us create one example 

ikjP ,
 in the radial layer of the neural network according to 

the rule: 

 i

U

u
uj

kj U

D
P

i

i

i

i


 1

,

, ,

 

(2)

where  i

j

ii

i

u
Nj

u
j

u
juj dddD ,2,1,, ,...,, , iu  –

the number of the component of subclass ik , jN – 

the length of the component of the scale j ,

iU
 

– quantity of the components of the 

subclass ik .

Applying the rule (2) in the formation of radial layer 

of the neural network, in contrast to the traditional 

approach [36], can significantly reduce the number of 

examples used and optimizes network performance. 

Obtained according to the rule (2) examples of sub-

classes ijP ,
 

for the scale 6j
 

are shown at Fig. 5.

 

 

Analysis of the Fig. 5 shows that separation of images 

is the best  at night, due to the nature of the geomag-

netic process   and increase of disturbances in times of 

storms at night.  

Fig. 5 Examples of subclasses of the radial layer of the neural 
network for the scale 6j . 
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Fig. 6 shows the architecture of the neural network 

obtained.

Fig. 6 Architecture of the neural network 

Designed structure of the neural network team that 
performs evaluation of the geomagnetic field state 
is shown in Fig.7. The team consists of six radial 

neural networks, each of which performs assess-

ment of the state of a specific  detailing  compo-

nent of variation of the geomagnetic field. Forma-

tion of conclusion on the state of the geomagnetic 

field is based on decisions of the team  neural net-

works  and is  performed using the entered above 

decision rule. 

Fig.7 The structure of the neural network team. 

Evaluating the effectiveness of the method
With the help of the constructed neural networks  

team  assessment was performed of the geomagnetic 

field variations state, obtained at the Paratunka station 

(Kamchatka Region) for the period 2002-2008. The 

results of the team work are presented in Table 1. To 

evaluate the effectiveness of the proposed method a 

comparison of the gained results was made with the 

working results of conventional radial neural network, 

which is fed to the input with the original variation 

of the geomagnetic field (without the use of wavelet 

transform). Exemplary images of radial layer of such 

a network, in accordance with the procedure (2) were 

created as follows:

i

U

u
u

k U

f
P

i

i

i

i


 1

,0

where 
iuf ,0  is the original variation of the subclass ik ,

iu  is the number of variation of the subclass ik , iU is 

the  quantity of variations of the subclass  ik . 

The working results of the traditional neural network, 

presented in Table 1 (right column), confirm the 

effectiveness of the proposed method and the 

possibility of its use to automatically determine the 

perturbations extent of recorded geomagnetic field 

variations.

Table 1. Accuracy of operation of neural networks 

Analyzed period Error of net-

work collective, 

%

Error of tradi-

tional network, 

%

2002 18,58 48,82

2003 11,96 71,4

2004 19,89 51,16

2005 18,39 54,52

2006 18,57 55,7

2007 23,01 60

2008 18,85 54,37

Analysis of  work of the developed team of neural 

networks in the periods of high geomagnetic 

activity showed that in more than 70% of events on 

the eve of  strong and moderate magnetic storms  

weak perturbations of the geomagnetic field are 

recorded (97 events have been analyzed). Fig. 8, 

9, as an example, show results of the team work in 

times of two events: a magnetic storm with a sudden 

beginning on 2 October, 2013, and a magnetic 

storm with a gradual beginning on April 20, 2005. 

For two days before the start of the first magnetic 

storm, 29 September, at the Sun occurred proton 

C1.2 class flare with duration of 200 minutes, 

whose maximum was observed at 23:39 UT. The 

solar wind speed increased gradually on 1 October 

from  250 to 400 km / sec., a gradual onset of 

the storm at 07.48 UT have been registered in the 
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high latitudes[39]. The upper part of Fig. 8 shows 

the values of the indices of geomagnetic activity K 

(K-index), below the variations are shown  of the 

geomagnetic field (H-components). The bottom 

of Fig. 8 shows the results of evaluation of the 

geomagnetic field variations with the help of built 

team. It is seen that on the eve of the magnetic storm 

on October 1 collective of neural networks recorded 

weak perturbations. At the analyzed mid-latitudes 

the sudden onset of magnetic storm was registered 

on 2 October at about 01:52 UT [39]. 

Gradual start of the second analyzed magnetic storm 

was registered at mid-latitudes on 20 April, at about 

03:00 UT. The solar wind speed from the beginning of 

the day increased from 380 to 540 m / s. As the analy-

sis  of Fig. 9 shows, two days before the event the team  

of neural networks recorded weak perturbations of the 

geomagnetic field.  

Results obtained are consistent with the results of [13, 

14] and are important for condition forecast of near-

Earth space and for prediction of strong magnetic 

storms.

Fig. 8. The results of evaluation  of condition  of variations 
of the geomagnetic field during the period 30.09.2013-
04.10.2013 years.

Fig. 9. The results of evaluation of condition of variations of the 
geomagnetic field during the period 17.04.2005-21.04.2005 
years. 

A detailed analysis of the spectral-temporal charac-

teristics of field variations during magnetic storms 

showed that in most cases geomagnetic disturbances  

fall in  various detailing components. Fig. 10, 12 show 

trees of wavelet decomposition of the geomagnetic 

field variations  for magnetic storms under consider-

ation, gray colour marks the components that have 

been identified by neural networks as “disturbed”. It 

is evident that in the first case the geomagnetic dis-

turbances are recorded in all components, which in-

dicates the complex spectrum of variations and mul-

tiscale nature of the process. In the second case devi-

ations are recorded in detailing components of 3 – 6 

th scale. Also, in Fig. 10, 12 are shown the original 

variations of the geomagnetic field and their disturbed 

constituents, obtained by restoring “disturbed” detail-

ing components. Built wavelet spectra of perturbed 

components of field variations, shown in Fig. 11, 13, 

confirm a complex multiscale nature of the analyzed 

processes.

Fig. 10. Variation of the geomagnetic field during mag-
netic storm 2 October 2013 and its disturbed compo-
nent. 
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Fig. 11. The wavelet spectrum of the disturbed component 
of the geomagnetic field variation during the magnetic 
storm, 2 October 2013. 

 

Fig. 12. Variation of the geomagnetic field during the 
magnetic storm 20 April, 2005. and its disturbed com-
ponent.

Fig. 13. The wavelet spectrum of the disturbed component of the 
geomagnetic field variation during the magnetic storm 20 April, 2005.

Conclusion
The paper describes an automatic method for 

assessing the state of the geomagnetic field, based 

on a combination of wavelet transform with radial 

neural networks. Analysis of the   constructed neural 

networks team work has confirmed the effectiveness of 

the proposed method. The study of spectral-temporal 

characteristics of magnetic storms (86 events analyzed) 

showed that disturbances arising in the geomagnetic 

field  in the majority have a complex spectral structure 

and appear in various components of the field 

variations. It is noticed that on the eve of storms the 

proposed method recorded weak perturbations of the 

geomagnetic field, which is important for forecasting 

the state of near-Earth space and predicting strong 

magnetic storms.

In the experiments the variations of the geomagnetic 

field were used that had been obtained at Paratunka 

station in the Kamchatka region (data logging per-

formed by Institute of  Cosmophysical Research and 

Radio Wave Propagation of FEB RAS). 
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