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Introduction
Digital images are a significant type of information 

in present researches. Raster images are created 

by different modern digital devices, such as digital 

cameras, X-Ray scanners, etc. The application of 

digital equipment in varying conditions may give 

rise to various effects on raster images, including 

noises.

The problem of image noise removal is now relevant, 

too. For the purpose of successful noise removal it is 

necessary to know its type. There are different types 

of noise, such as Gaussian noise (most of digital 

images produced by digital cameras), Poisson noise 

(X-Ray images), speckle noise (ultrasonograms), 

etc.

Many noise removal methods have been presently 

developed for the cases when a noise type is known. 

For example, total variation [1-13] is a well known 

and effective approach. 

It seems likely that a concept of total variation for 

noise removal was first applied in paper [12] by 

Rudin L.I. and his co-authors Osher S. and Fatemi 

E. (ROF). They proposed to use total variation in 

image tasks. ROF is intended for Gaussian noise re-

moval [12, 13].

Certainly, it may also be used for removal of some 

other noise types however it is not really efficient 

then. Other popular noise is Poisson noise. For 

example, this noise appears in X-Ray images. ROF 

cannot efficiently remove such noise. Therefore, Le 

T. in his paper [14] created another model known as 

modified ROF.

Both types of noise (Gaussian and Poisson) are 

popular, and their combination is also important 

[15]. It often appears in biomedical images, e.g. in 

electron microscopy imaging [16, 17].

In order to remove both types of noise, we can com-

bine different models. Therefore, this paper offers to 

apply ROF in combination with modified ROF.

It is expected that this model should efficiently re-

move a noise combination with regard to a ratio of 

two types of noise.  

A real image was used in experiments after adding 

some noise thereto. The quality of processing was 

compared with other noise removal methods, for 

example, ROF, modified ROF, median filtering [18], 

Wiener filtering [19], Beltrami regularization [20]. 

To compare the image quality after restoration, we 

used such famous criteria as PSNR (Peak Signal-to-

Noise Ratio), MSE (Mean Square Error) and SSIM 

(Structure Similarity) [21, 22]. The most important 

of them are definitely PSNR and MSE interrelated 

criteria, since they are used to estimate the signal 

reconstruction quality and the image quality.

1. Mixed Gaussian and Poisson 
noise removal model 

Suppose in space 2R  we have specified a restricted re-

gion 2R  . We shall call the functions 2( , ) Ru x y   

and 2( , ) Rv x y  , respectively, as ideal (without noise) 

and real (noisy) images, where ( , )x y  . 

If the function u is a continuously differentiable func-

tion, its total variation is as follows:

[ ] | |TV u u dxdy



  ,

where ( , )x yu u u   is a gradient, /xu u x   , /yu u y   ,

2 2| | x yu u u   . We consider in this paper that total 
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variation of the function u  is limited by [ ]TV u   .
According to papers [1, 2, 12, 13, 23], smooth-

ness of images may be characterized by their total 

variation. Total variation of noisy images is always 

greater than total variation of appropriate smooth 

images. 

For the solution of the problem [ ] minTV u   it is 

necessary to put limitations on Gaussian noise 

variation:
2( )v u dxdy const



  .

Under these circumstances ROF for removal of Gauss-

ian noise is as follows [12]:
2arg min | | ( )

2u
u u dxdy v u dxdy

 

 
     

 
 

as the solution of the unconditional optimiza-

tion problem, where 0  is the Lagrange mul-

tiplier. 

For the purpose of noise removal based on ROF, 

we have proposed another model [14]. This 

model can be obtained in the performance of a 

constrained problem [ ] minTV u   as follows:

ln( ( | )) ( ln( ))p v u dxdy u v u dxdy const
 

    ,

as the solution of the unconditional optimization 

problem:

arg min | | ( ln( ))
u

u u dxdy u v u dxdy

 

 
     

 
  ,

where 0   is a regularization factor. This model 

is known as modified ROF for Poisson noise re-

moval.

To build a denoising model of mixed noise, we 

will also solve the noise removal problem 

based on a tangent property of total variation: 

[ ] minTV u  .  It is expected that noise variation 

is constant in the given imaging (Poisson noise 

is not changed, and Gaussian noise depends only 

on noise dispersion):

ln( ( | ))p v u dxdy const


 , (1)

where ( | )p v u  is conditional probability of observa-

tion of a real image v  at the given ideal image u .

Let us consider Gaussian noise. Its distribution densi-

ty with dispersion 2  is determined as follows:

2

1 2

( )( | ) exp / ( 2 )
2

v u
p v u

 
     

.

Poisson noise density is determined as follows: 

2 ( | ) exp( ) / !vp v u u u v  .

Note that values of the image brightness functions 

u  and v  are whole numbers (for example, for eight-

bit images a brightness range is determined from 0 

to 255).

To eliminate the combination of Gaussian and Poisson 

noise, let’s consider the following linear combination:

1 1 2 2ln( ( | )) ln( ( | )) ln( ( | ))p v u p v u p v u    , 

where 1 0  , 2 0  , 1 2 1    .

According to (1), we shall obtain the following noise 

removal constrained task:

1 2
22

arg min | |

( ) ( ln( )) ,
2

u
u u dxdy

v u u v u dxdy







  

         
  




 

where   is a constant value.

Let’s reduce this problem to the unconditional optimi-

zation task using the Lagrange functional:

21
2( , ) | | ( )

2
L u u dxdy v u dxdy

 

 
       

 

2 ( ln( ))u v u dxdy



   


 ,

so as to come up with the following solution:

,
( , ) arg min ( , )

u
u L u 


   , (2)

where 0   is the Lagrange multiplier. 

In this model, if 1 0   and 2 1   then at 

2      we shall obtain modified ROF for Pois-

son noise removal. If 2 0   and 1 1   then at 
2 2

1 / (2 ) / (2 )        we shall obtain the ROF 

model for Gaussian noise removal. If 1 20, 0     

then we shall obtain a mixed Gaussian and Poisson 

noise removal model.

2. Mixed noise discrete model 
To solve the above equation (2), we can apply the 

Lagrange multiplier method [24, 25, 26]. In this pa-

per we shall use the Euler-Lagrange equation [24]. 

Suppose the function ( , )f x y  has been defined in 

the constrained area 2R   and is continuously 

differentiated up to the second order in x  and y  

at ( , )x y  . 

Suppose ( , , , , )x yF x y f f f  is a convex functional 

where /xf f x   , /yf f y   .  The solution of the 

optimization problem ( , , , , ) minx yF x y f f f dxdy


  

shall satisfy the Euler-Lagrange equation:

( , , , , ) ( , , , , )
xf x y f x yF x y f f f F x y f f f

x


 


 

( , , , , ) 0
yf x yF x y f f f

y


 


,

where /fF F f   , /
xf xF F f   , /

yf yF F f   .

Then the solution of the task (2) shall satisfy the fol-

lowing Euler-Lagrange equation:
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1
22 ( ) (1 )v

v u
u


     


2 2 2 2
0,yx

x y x y

uu
x yu u u u

         
        

 (3)

where 1/  . 

Let us equate the above equation (3) as follows:

1
22 ( ) (1 )v

v u
u


   

 2 2

2 2 3/2

2
0

( )
xx y x y xy x yy

x y

u u u u u u u

u u

 
 


, (4)

where  
2

2xx

u
u

x





, 
2

2yy

u
u

y





, xy yx

u
u u

x y
  

    
.

In order to obtain a discrete model (4), we shall add 

an artificial time parameter ( , , )u u x y t . The equa-

tion (4) corresponds to the diffusion equation:

1
22 ( ) (1 )t

u v
u v u

t u


     
 

2 2

2 2 3/2

2
( )

xx y x y xy x yy

x y

u u u u u u u

u u

 



. (5)

Let us consider the 1 2N N image. Then a discrete form 

of the above equation (5) shall be as follows:

1 1
2 ( )k k k

i j i j i j i ju u v u      
2 (1 )i j k

i jk
i j

v

u


   


, (6)

2

2 2 3/2

( )( ( ))
(( ( )) ( ( )) )

k k
xx ij y ijk

i j k k
x ij y ij

u u

u u

 
  

  

2

2 2 3/2

2 ( ) ( ) ( ) ( ( )) ( )
(( ( )) ( ( )) )

k k k k k
x ij y ij xy ij x ij yy ij

k k
x ij y ij

u u u u u

u u

      


  
,

1, 1,( )
2

k k
i j i jk

x ij

u u
u

x
 

 


, 

, 1 , 1( )
2

k k
i j i jk

y ij

u u
u

y
 

 


,
1, 1,

2

2
( )

( )

k k k
i j ij i jk

xx ij

u u u
u

x
  

 


,

, 1 , 1
2

2
( )

( )

k k k
i j ij i jk

yy ij

u u u
u

y
  

 


,

1, 1 1, 1 1, 1 1, 1( )
4

k k k k
i j i j i j i jk

xy ij

u u u u
u

x y
         

 
 

,

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k
j j N j N j i i i N i Nu u u u u u u u    

1 21,..., ; 1,..., ;i N j N 

0,1,..., ; 1; 0 1k K x y        , 

where K  is a sufficiently large number, 500K  .

3. Parameters of the mixed noise model
The above procedure (6) may be used for im-

age noise removal if values of the parameters 

1 2, , ,     have been defined. These parameters 

are often unknown in practice and must be es-

timated. The parameters 1 2, ,    in (6) must be 

represented as 1 2, ,k k k   in each iteration k . In a 

new procedure these parameters will be computed 

at each iteration step.

3.1. Optimal parameters 
1
 and 

2  

Suppose ( , )u  is a solution of the above task (2). Then 

we shall obtain the condition ( , ) / 0L u u    .

This condition enables to calculate optimal parameters 

of the linear combination of noises 1 2,  :

1

2

(1 )

1 ( ) (1 )

v
dxdy

u
v

v u dxdy dxdy
u



 


 

  




 
, 2 11   .

A discrete form for the calculation of parameters is as 

follows: 1 2

1 2

1 1
1

2
1 1

(1 )

( 1 )

N N
ij
k

i j ijk
kN N

ij ij ij
k

i j ij

v

u

v u v

u

 

 



 


 





, 2 11k k   ,

where 0,1,...,k K .

3.2. Optimal parameter m
For the search of the optimal parameter , let us mul-

tiply (3) by ( )v u  and integrate it by parts across the 

whole region . Finally, we shall obtain the following 

formula to find the optimal parameter : 
2

1 2
22

2 2

2 2

( )( ( ) )

( )x x y y
x y

x y

v u
v u dxdy

u
u v u v

u u dxdy
u u





 
  


 


 





.

Its discrete form is as follows:
1 2

1 2

2
21

22
1 1

1 1

( )
( ( ) )

kN N k
ij ijk k

ij ij k
i j ijk

N N
k
ij

i j

v u
v u

u 

 


  


 





,

where

2 2( ( )) ( ( ))k k k
ij x ij y iju u     

2 2

( ) ( ) ( ) ( )

( ( )) ( ( ))

k k
x ij x ij y ij y ij

k k
x ij y ij

u v u v

u u

   


  
,

1, 1,( )
2

k k
i j i jk

x ij

u u
u

x
 

 


, 
, 1 , 1( )

2

k k
i j i jk

y ij

u u
u

y
 

 


,
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1, 1,( )
2

k k
i j i jk

x ij

v v
v v

x
 

 


, 
, 1 , 1( )

2

k k
i j i jk

y ij

v v
v

y
 

 


,

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k
j j N j N j i i i N i Nu u u u u u u u    

1 1 2 20 1 1, 0 1 , 1 ,; ; ; ;j j N j N j i i i N i Nv v v v v v v v    

1 21,..., ; 1,..., ;i N j N  0,1,..., ; 1k K x y     .

3.3. Optimal parameter s
To calculate the parameter   we have used the Im-

merker method [27] herein:
1 2

1 11 2

/ 2 | * |
6( 2)( 2)

N N

ij
i j

u
N N  


  

   , (7)

where
 1 2 1

2 4 2
1 2 1


 



 
   

 

 
is an image mask.

An operator * is the convolution operator where:

1, 1 33 , 1 32 1, 1 31 1, 23*ij i j i j i j i ju u u u u              
22 1, 21 1, 1 13 , 1 12 1, 1 11ij i j i j i j i ju u u u u               ,

where 1 21,..., ; 1,..., ;i N j N  0iju  , if 0i  , or 0j  ,

or 1 1i N  , or 2 1j N  .

The parameter   is calculated in the first iteration.

4. Image quality assessment 
To assess the image quality after noise removal, 

we have used the criteria PSNR, MSE and SSIM 

[21, 22]:

1 2
2 2

1 2
1 1

10 lg / ( )
N N

PSNR ij ij
i j

Q N N L v u
 

 
  

 
 ,  

1 2
2

1 11 2

1 ( )
N N

MSE ij ij
i j

Q v u
N N  

  ,

1 2
2 2 2 2

1 2

(2 )(2 )
( )( )

uv
SSIM

u v

u v C C
Q

u v C C


 
 


   

,

where

1 2

1 11 2

1 N N

ij
i j

u u
N N  

  , 
1 2

1 11 2

1 N N

ij
i j

v v
N N  

  .

1 2
2 2

1 11 2

1 ( )
1

N N

u ij
i j

u u
N N  

  
  , 

1 2
2 2

1 11 2

1 ( )
1

N N

v ij
i j

v v
N N  

  
  ,

1 2

1 11 2

1 ( )( )
1

N N

uv ij ij
i j

u u v v
N N  

   
  , 

2 2
1 1 2 2 1 2( ) , ( ) ; 1; 1C K L C K L K K    . 

For example, 6
1 2 10K K   , 82 1 255L     is the 

brightness of 8-bite grayscale image.

The more is QPSNR, the better is the image quality. 

If the value QPSNR is over the range 20 to 25, the 

image quality is acceptable, for example, for wire-

less transmission [28]. 

The value QMSE has been used to assess the dif-

ference between two images, where QMSE is the 

mean square error. The lower the value QMSE, the 

better the recovery result. The value QMSE is di-

rectly related to the value QPSNR. 

The value QSSIM has been used to assess the image 

quality by comparing the similarity of two images. 

Its value lies within the interval between -1 and 

1. The higher is the value QSSIM , the better is the 

image quality. 

5. Initial solution
It is clear that in the local iteration procedure (6), 

the result depends on initial values of the parameters
0 0 0
1 2, ,   in general. 

If first we set the parameters 0 0 0
1 2, ,   , then un-

successful values will define not good estimates 

iju and through them – distribution parameter es-

timates. 

Arbitrary selection of the parameters 0 0 0
1 2, ,    

is also unacceptable, since it can really introduce 

some additional noise in the image.

It is obvious that initial values of the parameters 
0 0 0
1 2, ,    should be close enough, when possible, to 

those values which will be defined. Therefore, let us 

estimate the parameters 0 0 0
1 2, ,    as the image av-

erage by neighbor pixels using, for example, the Im-

merker method (7).

6. Experiments
The proposed model has been tested on real images. 

For example, we used a human skull image [29] with 

300x300 pixels in size (Fig. 1а). The remaining images 

(Fig. 1b – 1h) show an enlarged image segment thereof.

To obtain a noisy image, first we added Gaussian noise 

(Fig. 1c) and then – Poisson noise (Fig. 1e). Fig. 1g 

shows the noisy image for two mixed noises with the 

parameters 1 0,8  , 2 0, 2  . 

The linear combination parameters 1  and 2  

were defined as follows. First we considered Pois-

son noise with the distribution density 2 ( | )p v u  and 

the variation 2 iju  , with respect to the mean 

value iju  in each pixel with the coordinates ( , )i j , 

1 21,..., ; 1,...,i N j N  . 

The brightness function of this image is designated 

as (2)v . Its values should be within the range from 0 

to 255. If the value is beyond this range, it doesn’t 

change (2)
ij ijv u . Only these five values (0.0056%) 

happed to be in this image. 

Total dispersion of Poisson noise is defined as the 

mean value 2 10,0603  . 
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a)    

b) 

c)      

d) 

e) 

f) 
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g)      h) 

Fig. 1. Noise removal in real images: а) initial image, b) 
enlarged image segment, c) with Gaussian noise, d) upon 
Gaussian noise removal, e) with Poisson noise, f) upon 
Poisson noise removal, g) mixed noise, h) upon mixed noise 
removal

We further assumed that dispersion of Gaussian 

noise 1 40,2412   was four times more. The bright-

ness function of this image is designated as (1)v .  As 

before, values of the brightness function (1)v  should 

be also over the range 0 to 255. In this case, it turned 

out that 5780 (6.42%) pixels with the brightness 

value (1)
ijv  are beyond this range. A resultant image 

(Fig. 1g) has been formed by two noisy images in 

ratio 0.5 for (1)v  and 0.5 for (2)v . This means that
(1) (2)0,5 0,5v v v  . Hence, 

1 2/   40,2412 0,5 4 /1
10,0603 0,5





.

We shall finally obtain that linear combination coefficients 

have the following values, respectively:  1 4 / 5 0,8    

and 2 1/ 5 0,2   .

For the noisy image the quality criteria have the fol-

lowing values, respectively: QPSNR =21.4168, QMSE 

= 427.9526 and QSSIM = 0.4246.

Tables 1–3 show the noise removal results in this im-

age for the cases of preset and automatically defined 

parameters.

Note that in this case the value QPSNR after noise re-

moval for preset (ideal) parameters is better than for 

automatically defined estimates, though for the value 

QSSIM we can also observe the opposite.

To create the initial image we have used the con-

volution operator (7). Table 2 shows the depen-

dence of the reconstructed result on the initial 

solution, where: 

(а) the initial parameters 0 0
1 20, 1, 1      ; 

(b) the  initial parameters 0 0
1 2 0,5, 1      ;   

(c) the initial solution 0u  has been defined as a given 

sized random matrix;

d) the initial solution 0u  has been defined as the av-

erage of neighbor pixels 0 *u v A  by the convolution 

operator 

where 
1 1 1
1 1 1
1 1 1

1
9

A
 

  
 

.

Table 4 shows that the best result of combined 

noise removal corresponds to the case (d) of se-

lection of the initial solution by criteria PSNR and 

MSE. 

Conclusion
This paper offers the method of mixed Gaussian-Pois-

son noise removal based on the famous variation ap-

proach.

The noise removal quality depends on values of the 

linear combination coefficients 1  and 2 . These 

values should be preset or automatically defined 

that is important in the case of processing of real 

images.

Table 1. Comparison of quality of noise removal methods in 
real images for mixed noises

Process by Q
PSNR

Q
SSIM

Q
MSE

Without processing 21.4168 0.4246 427.9526

ROF 26.5106 0.8465 145.2183

Modified ROF 26.3153 0.6885 151.8976

Median filter 25.6477 0.7871 177.1364

Wiener filter 24.2657 0.6596 243.5077

Beltrami method 26.8549 0.6678 134.1484

Proposed method with 
1
=0.8, 

=0.2,= 0.0857,= 40.2412

27.4315 0.8198 117.4713

Proposed method 

with automatically defined 

parameters =0.8095, 

=0.1905,  = 0.0970, 

 = 38.2310

27.2567 0.8383 122.2941

Table 2. Comparison of quality of noise removal methods in 
real images with Gaussian noise

Process by QPSNR QSSIM QMSE

Without processing 16.5386 0.2516 1442.900

ROF 25.0181 0.7194 204.770

Modified ROF 21.2356 0.4536 489.2402

Median filter 23.1412 0.6314 315.4741

Wiener filter 22.5138 0.5059 364.5051

Beltrami method 20.4575 0.3745 585.2284

Proposed method with 
1
=1, 

=0,  = 0.0978,  = 40.2412
25.0200 0.7735 204.6811

Proposed method with auto-

matically defined parameters

=0.9738, =0.0262, 

 = 0.0954,  = 38.9036

24.9681 0.7389 207.1441



Image Processing, Pattern Recognition

Thanh D.N.H. et al… COMPUTER OPTICS, 2015: 39(4), 564-571

570

For real images this method with automatical-

ly defined parameters gives the result, which is 

close to the ideal, when true parameter values 

have been predetermined. The method may be 

used to separately remove either Gaussian or 

Poisson noise.

Table. 3. Comparison of quality of noise removal methods in 
real images with Poisson noise

Process by QPSNR QSSIM QMSE

Without processing 27.7349 0.6902 109.5442

ROF 32.0548 0.9355 40.5131

Modified ROF 33.6101 0.9501 35.5310

Median filter 27.7349 0.6902 109.5442

Wiener filter 25.0410 0.8113 203.6962

Beltrami method 31.6356 0.9425 44.6195

Proposed method with 
1
=0, 


2
=1,  = 0.0853,  = 0.0001

33.5213 0.9452 36.2235

Proposed method with au-

tomatically defined param-

eters 
1
=0.0045, 

2
=0.9955, 

 = 0.0797,  = 2.7797

32.6244 0.9362 45.3455

Table.4. Dependence of the result of combined noise removal 
on the initial solution 

(а) (b) (c) (d)


1

0.8095 0.8114 0.9256 0.8069


2

0.1905 0.1886 0.0744 0.1931

 0.0970 0.0985 0.1026 0.0965

 38.2310

QPSNR 27.2567 27.1327 26.4279 27.2571

QMSE 122.2941 125.8371 148.0081 121.632

QSSIM 0.8383 0.8381 0.8497 0.8384

The quality of image processing practically equals to 

the quality of methods dedicated to remove only one 

type of noise. 
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