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[16] Statistical estimation 
of the probability of the correct 
substance detection in FTIR 
spectroscopy

Abstract 
In the present paper a problem of substance identification in FTIR (Fourier transform infrared) spectros-

copy is considered. The spectral library hitlist search is chosen as the main tactic. In the paper the Pearson 

correlation coefficient as a similarity criterion between two spectra is suggested. A situation when one of the 

measured spectra has an additive narrowband white noise component with a Gaussian distribution is consid-

ered. In that case the probability density of the correlation coefficient is found. A concept of the probability 

of correct detection is proposed and a theoretical expression is found. In addition, we consider a boundary 

correlation coefficient search algorithm, which allows one to find a boundary value providing the required 

correct detection. Computational experiments have shown the applicability of the method.
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Introduction 

The problem of remote control of air pollution, as 

well as air chemical control of industrial and other 

important sites is sufficiently relevant to date. The 

reason for this is the increasing growth of the number 

of pollutants, as well as growth of industries whose 

emissions cannot be defined in direct contact.  As 

a result, for more than two centuries technologies 

and methods of contactless identification are be-

ing developed.  One of the characteristic properties 

strictly individual for each substance is its optical 

spectrum; it can be used as a kind of ID. One of the 

common methods for obtaining spectra of substanc-

es is an infrared (IR) spectrometry. The choice of IR 

range is caused by the fact that the radiation in this 

range excites vibration motion of molecules or their 

fragments, resulting in the weakening of the intensi-

ty only at frequencies of molecular vibrations, so the 

spectrum of each substance is unique, and spectral 

lines are selective and pronounced.

IR spectrometers are divided into diffraction and IR 

Fourier spectrometers based on interferometers. In 

this work a second class of devices will be considered; 

however, the methods described can be used for dif-

fraction method also. Fourier spectrometers special 

feature is their ability to work with lower intensities 

[1] than in diffraction devices, which allows to detect 

their self-radiation spectra.

An important problem arising in the development of in-

frared Fourier spectrometer is the choice of method for 

identifying a substance from the reconstructed spectrum. 

Of course, chemical composition may be analyzed by 

the presence of some specific bands in the spectrum, but 

more reliable and accurate method is consistent compar-

ison of the obtained spectrum with the spectra of already 

known substances stored in the database of reference 

spectra data. It is obvious that identifiable signal may 

contain considerable noise, and it even further compli-

cates the situation. At present we know many different 

methods and tools for solving problems of recognition, 

such as: trained neural networks [2], the use of indistinct 

logic [3], the methods of PCA (principal component 

analysis) [4], as well as introduction of a variety of mea-

sures of similarity between the data [5-11]. Major work 

on search and comparison of spectra of substances in the 

database have been made by Clerc [12] and Luinge [13]. 

Also a fundamental work on calculation of similarity 

measures in the database has been done in [14]. One of 

the possible measures of similarity is Pearson statistical 

coefficient of correlation [15] (hereinafter, we shall as-

sume that the spectra are presented as numerical vectors 

of finite length):
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where  ,x y
 

  are vectors of compared spectra, 

x  is the arithmetic average of the components of the 

vector x


,
x


 is Euclidian vector norm.  

Here and further the expression x x


 means subtrac-

tion of the same scalar from all the components.

It is known that [ 1,1],r   while equality to unit 

can only be achieved when signals are linearly de-

pendent, that in the case of spectra allows to speak 

about their identity. The less “similar” are spectra, 

the closer is the value of (1) to zero. Note that when 

r (1) approaches unity, spectra difference norm ap-

proaches the global minimum. In [16-22] a method 

is described  for identifying based on correlation 

coefficient: first, the value of (1) is calculated for 

the tested spectrum  with all the spectra in the data-

base, then the substance is selected  with the highest 

correlation coefficient, and if (1) exceeds a prede-

termined empirical threshold, the substance is con-

sidered identified.

Probabilistic characteristics 
of the correlation coefficient

Fisher and Kenney [23, 24] obtained the exact theoret-

ical expression for the function of probability density 

of Pearson correlation coefficient  when two random 

variables are compared with two-dimensional Gauss-

ian distribution with a certain correlation. A signifi-

cant limitation is that both vectors must be random. In 

turn, when identifying on the database in IR Fourier 

spectrometry reference spectra can be considered ex-

actly known because they were obtained in laboratory 

studies by  multiple averaging. It is also impossible to 

know in advance a probabilistic correlation coefficient 

without a set of multiple statistics.

Suppose that the analyzed vector contains white 

noise with a normal distribution, then the resulting 

spectrum will have the same noise characteristics 

due to the properties of the Fourier transformation. 

That is, the analyzed spectrum can be represented as:
* *,x y    

   
, (2)

where 
*


 is the vector of the reference spectrum, 



 is a noise vector, each component of which has 

a normal distribution with known characteristics   
2(0, ) .

Let us denote by jr  the correlation coefficient of 

spectrum x


 with a substance from the database with 

number 1,...,j M , where M is the number of sub-

stances in the database. Let us consider that the da-

tabase includes a substance with 
*


spectrum, and 

its number is *j .

We will get an explicit expression for correlation co-

efficient in the case where x


spectrum is compared 

with 
*


spectrum. Having substituted (2) into (3),  

we will get: 
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where 

*

* * 2
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 is a mean-square deviation of the 

*
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spectrum, characterizing its intensity. 
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is a coefficient of pure noise correlation with the refer-

ence spectrum *


,
2

2

N

  
 



  (5)

is mean square deviation of noise, 

N  is the number of points in the experimental spec-

trum. 

It is seen that *jr  is a function of two random value s 

(4) a nd (5), having a normal and chi-squared dis-

tribution respectively. Accurate analysis of funct ion 

(3) in this case is presented in [25]. However, we 

can use the fact that in the considered spectra the 

number N  is sufficiently large (usually from 200 to 

800), in order to examine the expres sion (5) as a 

point estimate of dispersion 2
 .

Note that in the denomi nator (3) 2  and the quan-

tity 
*

*2 ˆ jr   are added. If we assume 2 2
   , than 

an error of such an assessment would be 

4

2

(2 2)N

N


 [26], 

and dispersion of the value 
*

*2 ˆ jr   can be obtained 

by the theorem on the sum of random variables: 

*
2 2ˆ4
N
  

. If the condition 
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,  (6)

is satisfied, we can take the value 2 as a determined 

variable and equal to 2
 . In the left part of expr ession  

(6) there is the signal/noise ratio (SNR). So, the co n-

dition (6) may be interpreted as a requirement of a sig-

nificant excess of the signal level above the noise level. 
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Taking into account (6), the expression (3) can be rep-

resented as:

 

*
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*
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j
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SNR SNRr
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. (7)

A similar result was obtained in [27], under assump-

tion that 
*

0jr  , that is possible only when N  . 

Correlation coe fficient (7) is a function of only one 

random value with a known distribution: 
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Using the  function (8), moments of all orders can be 

obtained. 

For the case *j j  correlation coefficient will be writ-

ten as follows:  
*

*
,
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where it is introduced: 
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jr  is determined analogously to (4), but for the 
j


spectrum, 
j


 is a reference spectrum of  j substance 

in the database.  

Function (9) depends on two random values, and 

we must bear in mind that those values are not in-

dependent. In order to find their joint distribution 

we must know the correlation function of noise. We 

assume that the noise is uncorrelated 
2

i j ij      , 

where ij  is the Kronecker symbol. Then, taking 

into consideration (8), covariance of correlation co-

efficients can be written * * *

*
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and the probabilistic correlation coefficient will 

equal 
*jjr .

Thus, the simplified formulas for correlation c oeff i-

cients (7) and (9) are derived, and also properties of 

random values included in them are found. 

Correct detection of a substance
Since the analyzed spectrum is noisy, it is not always 

possible to identify the substance correctly. There may 

be cases where, for example, another substance will be 

identified, or when the signal is regarded as pure noise 

and omitted. In practice it is necessary to know with what 

probability the detection was made. Let us formulate a 

definition of correct detection. Suppose the spectrum x


 

of substance *j  from the database is investigated. Then 

detection is considered correct if correlation coefficient 
*jr  has exceeded correlation coefficient with all other 

substances, and moreover, has exceeded some previously 

predetermined threshold *
*
jr . 

Mathematically, the probability of such an event can 

be written as follows:

   *
* * *r *, rj j j

correct jj jP P r r    
 

  (11)

Let us consider separately each of the expressions in 

parentheses. Substituting in (11) previously obtained 

expressions (7) and (9), then 

 * *
1j j jjr r SNR r    . (12)

 

Let us introduce the value j
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Formula (11) shows that probability of correct detec-

tion can be represented as a function 

of only one random vector  *

1 2 , , r, , ,j
M    


 

having the length M (the number of substances in the 

database) , and on the position of *j there is the value
 *jr . It is evident that all the components of the vec-

tor 


 are statistically dependent and all of them are 

subject to the multidimensional Gaussian distribution. 

To find their joint distribution we construct the cova-

riance matrix for the values i  и j . Let us use  the 

terms from (10) for noise correlation, then 

   * *
1

cov ,
ij ij jj

i j

r r r

N

  
   , (13)

where *,i j j . 

Covariance of values 
*jr  and j  will equal 

 
*
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j
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r
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

   (14)

Let us con sider the expression in the second bracket in 

(11). Substitu ting (7), we obtain:
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Let us denote the upper and lower bounds of the solu-

tion to this inequation with respect to
 

*jr  as up  and 

down  respectively. 

Combining (13) and (14), we obtain the final covari-

ance matrix:
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Fig. 1. Dependence of average value [ ]jE r   of correlation coefficient on the “signal/noise”( “S / N”)ratio

The joint probability density for vector 


 will have 

the form 
 

 
11exp .

2
1

2 ||

T

M
w        

  
  (15)

As a result, the probability of (11) can be found as an 

integral of (15) over the domain of admissible values: 

 dcorrectP w


   , (16)

where    is the area bounded by , nup dow   an d an 

inequation (12).

Let us briefly describe the resulting algorithm for 

calculating the probability of correct detection:

1. The tested spectrum is compared sequentially with 

all substances from the database,

2. A substance is selected with which the correlation 

coefficient was the highest,

3. If the maximum correlation coefficient exceeds 

empirical threshold, then the substance is considered 

identified.

4. The identified substance index is remem-

bered. 

5. By this index a covariant matrix   is built 

and region boundaries of values  are found. 

 6. Accordin g to the formula (16) the probability of 

correct detection is found.

Experimental test 
To verify the obtained results, numerical experiments 

were carried out with the actual base of the spectral 

transmittance coefficients consisting of more than 

50 spectra. Numerical simulation was carried out in 

MATLAB by generating random variables, followed 

by calculation of different statistical characteristics. 

Typically, the experiment was repeated 1000-10000 

times with various substances, and non-biased statis-

tical estimators were found.
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Figure 1 shows a comparison of the theoretical aver-

age values obtained from the formulas (7) and (9), 

with mathematical expectations of the correlation 

coefficient (1) (in the figure they are shown with 

points). We see good correlation of results, indicat-

ing the applicability of the assessment (6) for calcu-

lation of the moments of the first order. Further in 

Fig.2 experiments are shown on calculation of the 

mean square deviation in comparison to the disper-

sions of correlation coefficients for two pairs of test 

substances. However, in this case discrepancies were 

already observed at low values of the signal to noise 

ratio. 

Fig.2. Dependence of the dispersion [ ]jD r  of correlation coefficient on the “signal to noise” r atio  (SNR)

From (15) and (16) we can see that in order to cal-

culate probability of correct detection it is neces-

sary to perform integration over the region of very 

large dimension (in this case dim( ) 58  ). This fact 

significantly slows down the speed of real systems 

and completely eliminates the possibility of working 

in real time. But during the numerical experiments 

it was found out that the estimate of the value (16) 

there may be replaced by the mathematical expecta-

tion of the probability of exceeding the correlation 

coefficient *jr over all others jr  :

   *
* * *1 ,j j j

correct j
j

P r P r
M

P r r
 

  
 

 
 
   

(17)

wherein each probability in the sum (17) is expressed 

in terms of the error function:

 
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*
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Figure 4. The threshold correlation coefficient depending on the signal to noise ratio for a given probability of correct detection.

Fig.3. Probability of correct detection correctP  
 from the “s/n” 

ratio (SNR)

The res ults of com parison (17) with the experi-

ment are shown in Fig.3. Each experimental point 

was calculated 1000 times and then averaged. The 

results are identical even for low SNR value. For 

the case SNR > 1 for all the substances it is shown 

that the probability of the event *j jr r  is ex-

tremely small. Therefore, a crucial role is played 

by the right multiplier in (17):

   
 

 *
*

*

*

*
*

*
,

**

,

d .
j

down

up

j

r SNR

r S

j
j

NR

j jP r r w r r



 



  
 

(19)

It is possible to express (19) analytically using 

special functions, but the resulting expression ap-

pears too bulky to bring it to the article. Note that 

with the help of (19) we can find thresholds for a 

given probability of correct detection. Although 

the relationship  *
*j correctr P is not expressed ex-

plicitly, determining the detection threshold for a 

given probability can be carried out using an in-

terpolation search algorithm, as  *
*jP r  is a mono-

tonically decreasing function. Computational 

complexity of such an algorithm [28] may be es-

timated as 

2 2log log 1
O
   
       

, 

where   is a permissible error. This result 

makes it possible to find substances detection 

thresholds for different SNR values, ensuring 

a predetermined correct detection probability 

(Figure 4). 
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Conclusion
The paper presents a method of determining the 

probability characteristics of the Pearson correla-

tion coefficient in the case where one of the signals 

has an addition of Gaussian -correlated noise, and 

the other has no noise. This method is proposed to 

be used to identify substances by their spectra in 

the FTIR spectrometry. The basic assumption of 

the method is based on Replacement of the random 

value with chi-squared distribution by its statistical 

estimator. It is shown that this approach is applica-

ble at high SNR.

Basing on the received probability character-

istics the definition of correct detection prob-

ability was formulated and explicit theoretical 

expression for this probability was found. Also 

simplified expressions, that allow to find the 

probability a lot faster in numerical calculation, 

were found. 

It is shown that the probability of correct detection 

depends on the threshold correlation coefficient, 

which previously was determined empirically. The 

technique is offered, allowing to find the detection 

threshold by a given probability of correct detection 

and signal to noise ratio.

The developed methods were tested on the actual 

database of substances spectra, consisting of 58 

substances, and the applicability of proposed meth-

ods when performing introduced ap proximations 

was shown.
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