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Introduction
To measure forces which act in optical blood 

cell trapping in capillaries in vivo, it is necessary 

to use good calibration methods for trap stiff-

ness [1,2]. For the time being, the most widely 

used calibration methods can’t be applied under 

in vivo trapping conditions, since these meth-

ods basically suggest both controlled influence 

on a particle, and tracking a particle position 

by means of a photodetector (Quadrant Photo 

Detector – QPD) using scattered light by par-

ticle [3]. The evaluation of trap stiffness under 

in vivo conditions may be performed using video 

microscopy tracking of spatial position of a cell 

[4] and also by means of further analysis of its 

dynamics in trapping [1,5]. To construct a dy-

namic model of cell trapping, it is necessary to 

analyze in detail the forces which act on the cell 

in optical cell trapping. 

There are three classes of objects identified, for 

which various calculation methods for the forces 

acting in optical trapping have been developed, 

i.e. small particles with a diameter less than 0.1 

(Rayleigh approximation), particles with inter-

mediate dimensions from 0.1 to 10 and large 

particles with the diameter more than 10 (ray 

optics approximation) [6]. Thus, red blood cells 

have geometrical dimensions which allow us to 

consider the problem of their optical trapping in 

the ray optics regime [7,8]. To simplify the calcu-

lations, we may consider (as an elementary model 

of a cell) a microsphere with proper geometrical 

dimensions [1,9].

The classical theory for calculating the forces 

in the ray optics approximation has been devel-

oped in papers [10,11], and this theory is now 

widely used for numeric evaluations of param-

eters of various experiments and for the con-

struction of their mathematical models [12-16].

This paper proposes a dynamic trapping model 

for microspheres with the dimensions d  10, 

when they move through a wide capillary at a 

constant speed. Based on this model, we have 

considered the microsphere trapping conditions 

depending on the motion speed, the focused laser 

radiation power and the dynamic fluid viscosity. It 

was found out that the maximum speed at which 

the trapping is possible may be determined by the 

fluid viscosity and the beam power. Therefore, at 

proper power and speed values, we may determine 

the local fluid viscosity in which microspheres or 

cells move around. In the absence of trapping (at 

a sufficiently high motion speed) the analysis of 

time dependence of a microsphere centre coordi-

nate on the radiation power in a focused beam will 

be performed. This analysis may be used when 

calibrating trap stiffness under the optical trap-

ping conditions in vivo.

To develop the dynamic trapping model, we 

have derived the calculating formulas of spa-

tial dependence of the acting force based on 

the analysis of geometrical shifts of photon mo-

mentum [17]. This approach enabled to analyze 

the refraction of beams belonging to different 

quadrants of microscope objective aperture, and 

also to get explicitly a calculating formula of 

[5] Dynamic analysis 
of optical cell trapping 
in the ray optics regime

Abstract 
We analyze forces that act in an optical trap on a biological cell modeled by a dielectric microsphere moving 

in a fluid. Analysis of the microsphere’s dynamical behavior has enabled key parameters for trapping of the 

cell to be identified, including the fluid viscosity and the laser beam power.

Keywords: OPTICAL TWEEZERS, OPTICAL CONFINEMENT AND MANIPULATION, LASER TRAPPING, RAY OPTICS MODEL OF OPTICAL TRAP

Citation: KLYKOV S.S. DYNAMIC ANALYSIS OF OPTICAL CELL TRAPPING IN THE RAY OPTICS REGIME // 
COMPUTER OPTICS. – 2015. – VOL. 39(5). – P. 694-701.

S.S. Klykov1, I.V. Fedosov1, V.V. Tuchin1,2,3

1N.G. Chernyshevskiy Saratov State University, Saratov, Russia
2Institute of Precision Mechanics and Control of Russian Academy of Sciences, Saratov, Russia
3Tomsk State University, Tomsk, Russia

DOI: 10.18287/0134-2452-2015-39-5-694-701



Klykov S.S. et al… COMPUTER OPTICS, 2015: 39(5), 694-701

Diffractive Optics, Opto-IT 695

the force dependence on the distance between 

the microsphere center and a beam focus. It is 

worth to note that the calculating formulas of 

the classical theory have been formally devel-

oped for the case of loosely focused beams (i.e. for 

a focusing lens with a small numerical aperture) 

[10,18]. Therefore, dividing the net optical force, 

which acts on the microsphere, into the gradient 

force and the scattering force performed for the fo-

cused beam [11] was not formally justified. So, in 

this paper based on the analysis of beam refraction, 

we have derived the expression coinciding with that 

one earlier obtained [11] for the force which can be 

interpreted as the gradient force. 

1. Geometrical model of an optical trap
To derive the calculating formulas for the forces 

which act on an object in the optical trap, let’s con-

sider refraction of the focused beam by microsphere. 

When the direction of beam propagation chang-

es, photon momentums directed along the beam 

vary. Variation of momentum may be caused only 

by the effective force acting from the microsphere. 

Therefore, according to the Newton’s third law, the 

microsphere is acted by the opposite force which can 

be written as follows: [11]: 
nP

F Q
c

  (1)

where Q – is the dimensionless coefficient, n – is 

the refractive index of a medium encircling the mi-

crosphere, P – is the radiation power of the focused 

beam, the focus size of which is much less than the 

microsphere geometrical sizes, с – is the speed of 

light in vacuum. 

Thus, to calculate the force acting on the object in the 

trap, it is necessary to calculate the dimensionless co-

efficient Q, which depends on geometrical changing 

the linear momentum of photons due to beam refrac-

tion and reflection on the surface of the dielectric mi-

crosphere.

In classical papers [10,11] the force acting on the 

microsphere was divided into two components: 

the scattering force (F
S
) and the gradient force 

(F
G
). For each of these forces we have introduced 

the following respective geometric factors qS and 

qG, which may be referred to the single-beam re-

fraction [11]: 
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The variables contained in the above expres-

sions (2) and (3) will be clarified below. 

Re f ra c t i o n  by  m i c ro s p h e re  i s  c o ns i d e re d 

f u r th e r  a t  th e  fo l l ow i ng  ap p rox i m a t i o ns : 

1. The focused beam is considered to be stig-

matic, however aberrations existing when fo-

cusing are not taken into account (the degree 

of impact of aberrations onto experimentally 

trap-measured forces has been set out in pa-

per [19]). 

2. Geometrical size of a focal spot is consid-

ered to be negligibly small compared to object 

dimensions, provided it’s true for lenses with 

large numeric apertures used for optical trap-

ping.

We have treated as a microsphere material 

both polystyrene (PS) with the refraction in-

dex n
S
 = 1.57 and isotropic dielectric with the 

refraction index 1.4 equal to the refraction 

index of a red blood cell [20]. As a medium 

in which microspheres moved, we have con-

sidered blood plasma and distilled water with 

the refraction index which is close to the re-

fraction index of blood plasma n
W

 = 1.33 [20], 

but its dynamic viscosity differs from the first 

medium. The selection of polystyrene as the 

microsphere material is explained by two rea-

sons: firstly, this material is discussed in clas-

sical paper [11] in order to calculate values of 

the dimensionless coefficient Q ;  therefore, this 

option is convenient to compare calculation 

results. Secondly, polystyrene microspheres 

are convenient objects for the implementation 

of algorithms of video microscopy tracking in 

optical trapping [2,4]. The difference in re-

fraction indices between polystyrene (1.57) 

and red blood cells (1.4) [20] during calcula-

tions results in decreasing the effective force, 

which may be compensated by increasing the 

laser radiation power to an appropriate value. 

The value of this power compensation is av-

eragely 2.8 times. Notice that the considering 

wavelength of laser radiation   belongs to the 

near infrared (IR) region in which radiation 

absorption by red blood cells and polystyrene 

is small.

Let’s construct a decomposition diagram 

(Fig. 1) of aperture microlens by quadrants to 

which microsphere-refracted beams belong, 

because the momentum changing projections 

after the refraction of beams belonging to dif-

ferent quadrants are different [21].
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Fig.1. Microsphere refraction of beams belonging to different quadrants 

Fig. 1 introduces the following notations: p. О – is the 

microsphere center, p. F – is the beam focus (trap cen-

ter),  OZ-axis – is the direction of beam propagation, 

OY-axis – is the direction of microsphere motion, the 

angles  and– are the angles which set a position of 

the incident beam with respect to objective aperture.

As observed in Fig.1, OY-axis projections of photon 

momentums belonging to the refracted beams depend 

on beam inhering to one of the following quadrant 

pairs: I/IV and II/III. This may explain a particular 

impact of refracted beams onto the resulting momen-

tum change.

It necessary to construct a refraction scheme for the 

beam belonging to quadrant I (Fig. 2) and analyze 

the change of the direction of its propagation after 

its refraction for further deriving of explicit equa-

tions.

Fig.2. Refraction scheme for the beam belonging to quadrant I

So let’s clarify some notations in Fig.2: the angle – is 

the beam incidence angle, the angle ’ – is the refrac-

tion angle, ОА, ОВ – are the normal lines to the sphere 
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surface, OX-axis is perpendicular to OZ– and OY-

axes. The direction of the incident beam is defined 

by vector р
1
, and of the refracted beam at the sphere 

exit – by р
2
, EG – is a perpendicular to OXY-plane. 

Then the angle formed by the incidence beam and 

the straight line OY may be determined from the fol-

lowing condition: cos cos cos   
From the triangle ОАF, in which lateral lengths are 

equal, we have the following: ОА=R – is the mi-

crosphere radius, OF=S – is the distance between 

microsphere and trap centers according to the sine 

theorem: sin sinS
R

   . 

In particular, this relationship defines a dramatic 

drop in the gradient force at distances which are 

larger than the radius R, because the beams with 

the largest incidence angle cease to be refracted 

by the microsphere and, consequently, to contrib-

ute to the resulting momentum change.

From the triangle LAF we have        . From 

the triangle АСВ we have  2       

Let’s draw an additional axis O Y OY   , and from 

the constructed triangle СРМ we have     . 

Due to these arrangements the projection p
2
 onto 

the axis OY is as follows:    2
2 cosY Tp     , 

where  T  – is the Fresnel transmission coeffi-

cient.

Then, the momentum change along the axis OY 

for quadrant I is written as follows:
  2

2 1 cos( ) cosI
Y Y Yp p p T          (4)

Thus, the momentum change is 0I
Yp   , and it is 

directed into the sphere center, therefore 0I
YF 

, i.e. I
YF may be interpreted as the gradient force 

which attempts to get back the sphere to the equi-

librium position, where the focus coincides with the 

sphere center.

The momentum change expression (4) takes into 

account the fact that the refracted beam momen-

tum has been decreased due to reflection from two 

interface borders, i.e. fluid-microsphere and mi-

crosphere-fluid, through multiplying by the trans-

mission coefficient  T 
Construction of the refraction scheme for the beam 

which belongs to quadrant II may be performed 

similarly to the aforementioned scheme with regard 

to the angle mirror symmetry.

Keeping the geometrical meaning of notations for pro-

jection angles of the beam momentum change from 

quadrant II, there can be obtained the following equa-

tion: 

 22 1 cos( ) cosII
Y Y Y Tp p p          (5)

Thus, the momentum change depends on the 

beam inhering to one of the quadrant pairs. The 

momentum change, which occurs due to the beam 

reflection, should be mutually compensated for 

mirror-symmetrical beams. Therefore, the beam 

momentum change is not equal for all quadrants, 

as mentioned in paper [11].

Further, let’s sum in modulus the expressions (4) 

and (5) and convert them to a final expression 

which describes the momentum projection change to 

the axis OY as follows:

 2 sin sinYp T      (6)

The formula expressing the spatial dependence of the 

coefficient Q included into the expression (1) and de-

fining the effective force is as follows:
/2 /2

0 /9

( ) ( , , )Y YQ S Sk p d d
 



       , (7)

where k – is the normalizing coefficient equal to
1


. 

This coefficient has been selected with regard to the 

equation of maximum calculating coefficients ac-

cording to the above formula (7) with the values given 

in paper [11].

The previously derived formula [11] for calculation of the 

gradient force sinG GF q   relating to the single-beam 

refraction coincides with the formulas derived in this 

paper to change the momentum Yp , if we set equal the 

Fresnel transmission coefficient 0R  . As noted above, 

we can’t take into account the refracted beams regardless 

of the beam inhering to one of the quadrants.

A lower integration limit in the above formula (7) by 

the aperture angle has been selected as equal to the 

value used in paper [11]. This limiting angle conforms 

with immerse lenses with the numeric apertures more 

than 1.2 (NA  1.2), which are to be implemented in 

practice for 3D-trapping of various microparticles 

[3,13] cells included [1,2].

2. Dynamics analysis 
of optical cell trapping

Dynamic analysis of optical cell trapping is based on 

the following model: the microsphere (as a cell mod-

el [1,5]) moves on flowing in fluid through a chan-

nel at a constant speed V0, so that its center is on the 

same axis as the beam focus (OY-axis). The consid-

ered dynamics of optical cell trapping in the plane, 

where there is the beam focus, may be explained by 

the fact that in 3D-trapping on this plane the lateral 

component FZ of the gradient force acting on a mi-

croparticle is actually equal to zero, that allows us to 

analyze a trapping problem only on the transverse 

plane OXY. If the axial force is sufficient for trap-

ping, then during this process the particle will move 

along the axis OZ, until it reaches an equilibrium 

point which lies near the focus that will not influ-



Diffractive Optics, Opto-IT

Klykov S.S. et al… COMPUTER OPTICS, 2015: 39(5), 694-701

698

ence on possible trapping in the transverse plane. 

The similar breaking of a 3D-trapping problem 

into subproblems which consider the acting forc-

es in two perpendicular planes was performed in 

most of subject-mattered papers, for example, in 

[1,10,11,17,18]. Furthermore, it is meaningless 

to consider the dynamics of cells moving out-of-

focus, because it is impossible to provide video 

microscopy tracking of their dynamics, and there-

fore, to perform experimental calibration of trap 

stiffness, one of the methods of which has been 

analyzed herein.

The force dependence 

   Y Y

nP
F S Q S

c
  

is determined according to the above formulas 

(1) and (7). The speed, at which the trapped 

microsphere is drawn from the trap thereaf-

ter, is still determined by this restoring force. 

Therefore, this speed is approximately 100 

μm/s, when the incident power is 10 mW. Based 

on this relationship, one of the classical meth-

ods for measuring trap stiffness, i.e. the “drag 

force method” [3], is based. 

The motion equation has a standard writing in accor-

dance with to the Newton’s second law [22]: 

      0Y

dV S
m F S V V S

dt
    , (8)   

where 6 r    – is the Stokes’s drag coefficient for 

the sphere.

The equation (8) does not take into account 

the Langevin random force which character-

izes the Brownian motion [22] of the particle, 

because the Brownian motion of fluid parti-

cles with dimensions of 10 μm max is suffi-

ciently small. 

The calculation results are given below in Fig. 

3а.-3d., which were calculated at various val-

ues of the incident power Р, different original 

motion speeds of the microsphere V
0
, and the 

dynamic fluid viscosity . The above mentioned 

parameters define in total the possibility of op-

tical microsphere trapping. The microsphere 

radius is supposed to be equal to 5 μm. We 

consider the microsphere optical trapping on 

flowing in water and blood plasma with proper 

dynamic viscosity values: for water – 103 Pa·s 
[22] and for blood plasma – 1.2·103 Pa·s [1]. 

Edge effects connected with the motion near 

the channel walls are not considered herein (it 

is assumed that the channel is wide enough), 

therefore the viscosity values are assumed equal 

to the tabulated values.

a) 

b) 

c) 

d) 
Fig.3. Trajectories of trapped microspheres with  n

S
 = 1.57 

under different conditions: a – is a phase trajectory  on moving 
in water flow at the value of the incident power 1 mW; b – at 
the value of the incident power 10 mW; c – at the value of the 
incident power 100 mW; d – is the dynamics of changing the 
microsphere center coordinate on flowing in blood plasma at 
different values of the incident power and at the value of the 
original speed equaled to 20 μm/s 
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The critical maximum speed, at which it is still 

possible to provide microsphere trapping, goes 

up rather slowly as the trap radiant power sig-

nificantly increases (from 1.6 μm/s at 1 mW to 

7.2 μm/s  at 100 mW – the values are given in 

the table below). The power increase results in 

changing the phase trajectory due to a small vis-

cosity coefficient compared to acceleration and 

speed values achieved at microsphere trapping. 

Thus, the parameter defining the critical speed 

is the dynamic viscosity of the medium in which 

cells move. This dependence may be accepted 

as a basis for a new noninvasive fluid viscosi-

ty method. This method may be based both on 

cell-motion tracking at different powers and the 

constant speed, and on tracing the trapping ef-

fect at a constant power and a varying cell-mo-

tion speed. 

Table. Values of maximum speeds

1 mW 10 mW 100 mW

For the flowing 

microsphere with 

n
S
 = 1.57 in water

1.6 μm/s 3.6 μm/s 7.2 μm/s

For the flowing 

microsphere with 

n
S
 = 1.57 

in blood plasma 

1.7 μm/s 3.8 μm/s 7.8 μm/s

For the flowing 

microsphere with 

n
S
 = 1.4 

in blood plasma

1.2 μm/s 2.9 μm/s 6.3 μm/s

Given the dependence of capillary walls on slow-

ing down the cells (for example, based on the 

Faxen’s law [23]), it becomes possible to provide 

cell trapping on capillary flowing. Therefore, in 

order to reduce the required power for permanent 

cell trapping in vivo, it is necessary to place a trap 

center close to a capillary wall.

Fig. 3d gives the dynamic characteristic of the 

coordinate y(t) when the microsphere passes 

through the trap. From Fig. 3 it is seen that the 

more the incident power, the more a deviation 

from the rectilinear law of the coordinate vari-

ation of the microsphere center by trapping. 

The cell trajectory distortion in capillaries may 

supplement the existing methods of trap stiff-

ness calibration in vivo [1,5]. Note that the 

bend-tracing process under experimental con-

ditions may be rather difficult. Nevertheless, 

the trap stiffness or the existing force may be 

evaluated by the coordinate time-dependant 

displacement at a constant motion speed.

3. Results and discussion
This paper considers the dynamic analysis of op-

tical trapping for the microsphere with the diame-

ter of 10 μm, when it moves in fluid at a constant 

speed rate. To construct a numerical model of the 

trapping dynamics, we have explicitly derived a 

formula required to calculate the dependence of 

forces, which act on the microsphere in the trap, 

on the distance between the microsphere center 

and the beam focus. This approach was based on 

the geometric calculation of photon momentum 

variations when refracting on microsphere sur-

faces. 

Furthermore, we have analyzed in this paper 

some trapping conditions for the microsphere at 

its axial movement with respect to the trap cen-

ter. We have calculated maximum speed rates at 

which it was possible to provide trapping of the 

microsphere depending on the incident power, 

the dynamic viscosity of the fluid and the micro-

sphere material. This dependence seemed to be 

non-proportional for different materials: when 

the incident power was changed tenfold, the 

critical speed was increased approximately two-

fold (see the above Table). Therefore, for the 

successful cell trapping in vivo, it is necessary to 

arrange the optical trap close to capillary walls 

in order to create the additional friction effect 

acting from walls to the cell. The above men-

tioned effect may also be applied on non-axial 

cell motions with respect to the trap center. In 

this case only the cell motion trajectory signifi-

cantly differs from the axial movement consid-

ered herein.

The dynamics of the microsphere motion in the 

trap and the possibility of trapping is deter-

mined not only by the beam radiation power, but 

also by the fluid viscosity (Fig. 3.а. – 3.с.). This 

fact may be taken as a basis for a new method 

to determine the local viscosity of blood plasma 

that would enable to expand application areas 

of optical manipulation performed in vivo [1,2].

In the absence of trapping, the optical trap pro-

vokes the microsphere motion distortion on 

flowing in fluid and, respectively, changing the 

dependence of the microsphere center position 

y on the time t. The value of this distortion de-
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pends, first of all, on the original speed and the 

incident power that might be used to develop 

a new calibration method for trap stiffness ap-

plied for trapping in vivo [1-3,5].

To discuss in detail the dynamics of optical 

cell trapping, it is necessary to analyze the 

force spatial dependence for a refracting ob-

ject which has a shape corresponding to the 

blood cell.
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